《剑指 Offer》——9、变态跳台阶

本文详细解析了青蛙跳台阶问题,通过两种方法——递归和等比数列,阐述了解决这一经典算法问题的思路与代码实现。首先,介绍了递归方法的递推公式和解决过程;其次,通过观察递归规律,推导出了等比数列的通项公式,提供了更高效的解决方案。
摘要由CSDN通过智能技术生成

1. 本题知识点

递归

2. 题目描述

一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级……它也可以跳上 n 级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。

3. 解决思路

思路一:递归

因为 n 级台阶,第一步有 n 种跳法:跳 1 级、跳 2 级…跳 n 级

跳 1 级,剩下 n-1 级,则剩下跳法是 f(n-1)

跳 2 级,剩下 n-2 级,则剩下跳法是 f(n-2)

所以 f(n)=f(n-1)+f(n-2)+…+f(1)

因为 f(n-1)=f(n-2)+f(n-3)+…+f(1)

所以 f(n)=2*f(n-1)

于是可以得到以下递推公式
f ( n ) = { 1 , n = 1 2 ∗ f ( n − 1 ) , n > 1 f(n) = \begin{cases} 1, & \text{n = 1} \\ 2*f(n-1),& \text{n > 1} \end{cases} f(n)={1,2f(n1),n = 1n > 1

思路二:等比数列

从上面的也可以看出来这是一个等比数列,那我们可以得出它的通项公式:
f ( n ) = 2 ( n − 1 ) ∗ f ( 1 ) = 2 ( n − 1 ) f(n) = 2^{(n-1)} *f(1)= 2^{(n-1)} f(n)=2(n1)f(1)=2(n1)

4. 代码

使用递归

public class Solution {
    public int JumpFloorII(int target) {
        if (target == 1) {
            return 1;
        }
        return 2 * JumpFloorII(target - 1);
    }
}

使用等比数列

public class Solution2 {
    public int JumpFloorII(int target) {
        return (int) Math.pow(2,target-1);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bm1998

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值