笔记类,指在学习课程、专栏过程中对个人有用内容的记录和少许理解。
目录
一、NoSQL的发展历史
定义:只要是为了弥补关系数据库的缺陷的方案,都可算nosql
二、关系型数据的缺点
关系数据库经过几十年的发展后已经非常成熟,强大的 SQL 功能和 ACID 的属性,使得关系数据库广泛应用于各式各样的系统中,但这并不意味着关系数据库是完美的,关系数据库存在如下缺点。
-
关系数据库存储的是行记录,无法存储数据结构
以微博的关注关系为例,“我关注的人”是一个用户 ID 列表,使用关系数据库存储只能将列表拆成多行,然后再查询出来组装,无法直接存储一个列表。
-
关系数据库的 schema 扩展很不方便
关系数据库的表结构 schema 是强约束,操作不存在的列会报错,业务变化时扩充列也比较麻烦,需要执行 DDL(data definition language,如 CREATE、ALTER、DROP 等)语句修改,而且修改时可能会长时间锁表(例如,MySQL 可能将表锁住 1 个小时)。
-
系数据库在大数据场景下 I/O 较高
如果对一些大量数据的表进行统计之类的运算,关系数据库的 I/O 会很高,因为即使只针对其中某一列进行运算,关系数据库也会将整行数据从存储设备读入内存。
-
关系数据库的全文搜索功能比较弱
关系数据库的全文搜索只能使用 like 进行整表扫描匹配,性能非常低,在互联网这种搜索复杂的场景下无法满足业务要求。
针对上述问题,分别诞生了不同的 NoSQL 解决方案,这些方案与关系数据库相比,在某些应用场景下表现更好。但世上没有免费的午餐,NoSQL 方案带来的优势,本质上是牺牲 ACID 中的某个或者某几个特性,关系型数据库仍然承担了各种应用程序的核心数据存储,而NoSQL数据库作为SQL数据库的补充,两者不再是二选一的问题,而是主从相互辅助的关系。
三、常见的NoSQL的分类
常见的 NoSQL 方案分为 4 类。
- K-V 存储:解决关系数据库无法存储数据结构的问题,以 Redis 为代表。
- 文档数据库:解决关系数据库强 schema 约束的问题,以MongoDB 为代表。
- 列式数据库:解决关系数据库大数据场景下的 I/O 问题,以 HBase 为代表。
- 全文搜索引擎:解决关系数据库的全文搜索性能问题,以 Elasticsearch 为代表。
3.1 K-V存储
K-V 存储的全称是 Key-Value 存储,其中 Key 是数据的标识,和关系数据库中的主键含义一样,Value 就是具体的数据。
Redis 是 K-V 存储的典型代表,它是一款开源(基于 BSD 许可)的高性能 K-V 缓存和存储系统。Redis 的 Value 是具体的数据结构,包括 string、hash、list、set、sorted set、bitmap 和 hyperloglog,所以常常被称为数据结构服务器。
以 List 数据结构为例,Redis 提供了下面这些典型的操作(更多请参考链接:redis操作)
- LPOP key 从队列的左边出队一个元素。
- LINDEX key index 获取一个元素,通过其索引列表。
- LLEN key 获得队列(List)的长度。
- RPOP key 从队列的右边出队一个元素。
以上这些功能,如果用关系数据库来实现,就会变得很复杂。例如,LPOP 操作是移除并返回 key 对应的 list 的第一个元素。如果用关系数据库来存储,为了达到同样目的,需要进行下面的操作:
- 每条数据除了数据编号(例如,行 ID),还要有位置编号,否则没有办法判断哪条数据是第一条。注意这里不能用行 ID 作为位置编号,因为我们会往列表头部插入数据。
- 查询出第一条数据。
- 删除第一条数据。
- 更新从第二条开始的所有数据的位置编号。
可以看出关系数据库的实现很麻烦,而且需要进行多次 SQL 操作,性能很低。
Redis 的缺点主要体现在并不支持完整的 ACID 事务,Redis 虽然提供事务功能,但 Redis 的事务和关系数据库的事务不可同日而语,Redis 的事务只能保证隔离性和一致性(I 和 C),无法保证原子性和持久性(A 和 D)。
虽然 Redis 并没有严格遵循 ACID 原则,但实际上大部分业务也不需要严格遵循 ACID 原则。以上面的微博关注操作为例,即使系统没有将 A 加入 B 的粉丝列表,其实业务影响也非常小,因此我们在设计方案时,需要根据业务特性和要求来确定是否可以用 Redis,而不能因为 Redis 不遵循 ACID 原则就直接放弃。
这类数据库包含:
- Aerospike
- Apache Ignite
- ArangoDB
- Berkeley DB
- Couchbase
- Dynamo
- FoundationDB
- InfinityDB
- MemcacheDB
- MUMPS
- Oracle NoSQL
- OrientDB
- Redis
- Riak
- SciDB
- SDBM /Flat File dbm
- ZooKeeper
3.2 文档数据库
为了解决关系数据库 schema 带来的问题,文档数据库应运而生。文档数据库最大的特点就是 no-schema,可以存储和读取任意的数据。目前绝大部分文档数据库存储的数据格式是 JSON(或者 BSON),因为 JSON 数据是自描述的,无须在使用前定义字段,读取一个 JSON 中不存在的字段也不会导致 SQL 那样的语法错误。
文档数据库的 no-schema 特性,给业务开发带来了几个明显的优势。
- 新增字段简单
业务上增加新的字段,无须再像关系数据库一样要先执行 DDL 语句修改表结构,程序代码直接读写即可。 - 历史数据不会出错
对于历史数据,即使没有新增的字段,也不会导致错误,只会返回空值,此时代码进行兼容处理即可。 - 可以很容易存储复杂数据
JSON 是一种强大的描述语言,能够描述复杂的数据结构。例如,我们设计一个用户管理系统,用户的信息有 ID、姓名、性别、爱好、邮箱、地址、学历信息。其中爱好是列表(因为可以有多个爱好);地址是一个结构,包括省市区楼盘地址;学历包括学校、专业、入学毕业年份信息等。如果我们用关系数据库来存储,需要设计多张表,包括基本信息(列:ID、姓名、性别、邮箱)、爱好(列:ID、爱好)、地址(列:省、市、区、详细地址)、学历(列:入学时间、毕业时间、学校名称、专业),而使用文档数据库,一个 JSON 就可以全部描述。
{
"id": 10000,
"name": "James",
"sex": "male",
"hobbies": [
"football",
"playing",
"singing"
],
"email": "user@google.com",
"address": {
"province": "GuangDong",
"city": "GuangZhou",
"district": "Tianhe",
"detail": "PingYun Road 163"
},
"education": [
{
"begin": "2000-09-01",
"end": "2004-07-01",
"school": "UESTC",
"major": "Computer Science & Technology"
},
{
"begin": "2004-09-01",
"end": "2007-07-01",
"school": "SCUT",
"major": "Computer Science & Technology"
}
]
}
通过这个样例我们看到,使用 JSON 来描述数据,比使用关系型数据库表来描述数据方便和容易得多,而且更加容易理解。
文档数据库的这个特点,特别适合电商和游戏这类的业务场景。以电商为例,不同商品的属性差异很大。例如,冰箱的属性和笔记本电脑的属性差异非常大,如下图所示。
即使是同类商品也有不同的属性。例如,LCD 和 LED 显示器,两者有不同的参数指标。这种业务场景如果使用关系数据库来存储数据,就会很麻烦,而使用文档数据库,会简单、方便许多,扩展新的属性也更加容易。
文档数据库 no-schema 的特性带来的这些优势也是有代价的,最主要的代价就是不支持事务。例如,使用 MongoDB 来存储商品库存,系统创建订单的时候首先需要减扣库存,然后再创建订单。这是一个事务操作,用关系数据库来实现就很简单,但如果用 MongoDB 来实现,就无法做到事务性。异常情况下可能出现库存被扣减了,但订单没有创建的情况。因此某些对事务要求严格的业务场景是不能使用文档数据库的。
文档数据库另外一个缺点就是无法实现关系数据库的 join 操作。例如,我们有一个用户信息表和一个订单表,订单表中有买家用户 id。如果要查询“购买了苹果笔记本用户中的女性用户”,用关系数据库来实现,一个简单的 join 操作就搞定了;而用文档数据库是无法进行 join 查询的,需要查两次:一次查询订单表中购买了苹果笔记本的用户,然后再查询这些用户哪些是女性用户。
这类数据库包含:
- Apache CouchDB
- ArangoDB
- BaseX
- Clusterpoint
- Couchbase
- Cosmos DB
- eXist-db
- IBM Domino
- MarkLogic
- MongoDB
- OrientDB
- Qizx
- RethinkDB
3.3 列式数据库
顾名思义,列式数据库就是按照列来存储数据的数据库,与之对应的传统关系数据库被称为“行式数据库”,因为关系数据库是按照行来存储数据的。
关系数据库按照行式来存储数据,主要有以下几个优势:
- 业务同时读取多个列时效率高,因为这些列都是按行存储在一起的,一次磁盘操作就能够把一行数据中的各个列都读取到内存中。
- 能够一次性完成对一行中的多个列的写操作,保证了针对行数据写操作的原子性和一致性;否则如果采用列存储,可能会出现某次写操作,有的列成功了,有的列失败了,导致数据不一致。
我们可以看到,行式存储的优势是在特定的业务场景下才能体现,如果不存在这样的业务场景,那么行式存储的优势也将不复存在,甚至成为劣势,典型的场景就是海量数据进行统计。例如,计算某个城市体重超重的人员数据,实际上只需要读取每个人的体重这一列并进行统计即可,而行式存储即使最终只使用一列,也会将所有行数据都读取出来。如果单行用户信息有 1KB,其中体重只有 4 个字节,行式存储还是会将整行 1KB 数据全部读取到内存中,这是明显的浪费。而如果采用列式存储,每个用户只需要读取 4 字节的体重数据即可,I/O 将大大减少。
除了节省 I/O,列式存储还具备更高的存储压缩比,能够节省更多的存储空间。普通的行式数据库一般压缩率在 3:1 到 5:1 左右,而列式数据库的压缩率一般在 8:1 到 30:1 左右,因为单个列的数据相似度相比行来说更高,能够达到更高的压缩率。
同样,如果场景发生变化,列式存储的优势又会变成劣势。典型的场景是需要频繁地更新多个列。因为列式存储将不同列存储在磁盘上不连续的空间,导致更新多个列时磁盘是随机写操作;而行式存储时同一行多个列都存储在连续的空间,一次磁盘写操作就可以完成,列式存储的随机写效率要远远低于行式存储的写效率。此外,列式存储高压缩率在更新场景下也会成为劣势,因为更新时需要将存储数据解压后更新,然后再压缩,最后写入磁盘。
基于上述列式存储的优缺点,一般将列式存储应用在离线的大数据分析和统计场景中,因为这种场景主要是针对部分列单列进行操作,且数据写入后就无须再更新删除。
这类数据库包含:
- Accumulo
- Cassandra
- Scylla
- HBase
3.4 全文搜索引擎
传统的关系型数据库通过索引来达到快速查询的目的,但是在全文搜索的业务场景下,索引也无能为力,主要体现在:
- 全文搜索的条件可以随意排列组合,如果通过索引来满足,则索引的数量会非常多。
- 全文搜索的模糊匹配方式,索引无法满足,只能用 like 查询,而 like 查询是整表扫描,效率非常低。
3.4.1 全文搜索基本原理
全文搜索引擎的技术原理被称为“倒排索引”(Inverted index),也常被称为反向索引、置入档案或反向档案,是一种索引方法,其基本原理是建立单词到文档的索引。之所以被称为“倒排”索引,是和“正排“索引相对的,“正排索引”的基本原理是建立文档到单词的索引。我们通过一个简单的样例来说明这两种索引的差异。
假设我们有一个技术文章的网站,里面收集了各种技术文章,用户可以在网站浏览或者搜索文章。
正排索引示例:
正排索引适用于根据文档名称来查询文档内容。例如,用户在网站上单击了“面向对象葵花宝典是什么”,网站根据文章标题查询文章的内容展示给用户。
倒排索引示例:
3.4.2 全文搜索的使用方式
全文搜索引擎的索引对象是单词和文档,而关系数据库的索引对象是键和行,两者的术语差异很大,不能简单地等同起来。因此,为了让全文搜索引擎支持关系型数据的全文搜索,需要做一些转换操作,即将关系型数据转换为文档数据。
目前常用的转换方式是将关系型数据按照对象的形式转换为 JSON 文档,然后将 JSON 文档输入全文搜索引擎进行索引。我同样以程序员的基本信息表为例,看看如何转换。
将前面样例中的程序员表格转换为 JSON 文档,可以得到 3 个程序员信息相关的文档,我以程序员 1 为例:
{
"id": 1,
"姓名": "多隆",
"性别": "男",
"地点": "北京",
"单位": "猫厂",
"爱好": "写代码,旅游,马拉松",
"语言": "Java、C++、PHP",
"自我介绍": "技术专家,简单,为人热情"
}
全文搜索引擎能够基于 JSON 文档建立全文索引,然后快速进行全文搜索。以 Elasticsearch 为例,其索引基本原理如下:
Elastcisearch 是分布式的文档存储方式。它能存储和检索复杂的数据结构——序列化成为 JSON 文档——以实时的方式。
在 Elasticsearch 中,每个字段的所有数据都是默认被索引的。即每个字段都有为了快速检索设置的专用倒排索引。而且,不像其他多数的数据库,它能在相同的查询中使用所有倒排索引,并以惊人的速度返回结果。
四、其他的分类方式
一种来自Stephen Yen更加精细的分类方式
五、写在最后
本文绝大部分内容出自极客时间-李运华老师的 《从0开始学架构》.,如有条件欢迎支持购买正版。