给定两个凸多边形 P 和 Q, 目标是需要找到点对 (p,q) (p 属于 P 且 q 属于 Q) 使得他们之间的距离最大。
很直观地,这些点不可能属于他们各自多边形的内部。 这个条件事实上与直径问题非常相似:
两凸多边形 P 和 Q 间最大距离由多边形间的对踵点对确定。
虽然说法一样, 但是这个定义与给定凸多边形的对踵点对的不同。
与凸多边形间的对踵点对本质上的区别在于切线是有向且反向的。 下图展示了一个例子:
上述结论暗示不单纯只是顶点对需要检测, 而仅仅是特定的顶点对需要被考虑到。 事实上他们只检测一个基于旋转卡壳模式的算法确立的平行切线。
考虑如下的算法, 算法的输入是两个分别有 m 和 n 个顺时针给定顶点的凸多边形 P 和 Q。
- 计算 P 上 y 坐标值最小的顶点(称为 yminP ) 和 Q 上 y 坐标值最大的顶点(称为 ymaxQ)。
- 为多边形在 yminP 和 ymaxQ 处构造两条切线 LP 和 LQ 使得他们对应的多边形位于他们的右侧。 此时 LP和 LQ 拥有不同的方向, 并且 yminP 和 ymaxQ 成为了多边形间的一个对踵点对。
- 计算距离(yminP,ymaxQ) 并且将其维护为当前最大值。
- 顺时针同时旋转平行线直到其中一个与其所在的多边形的边重合。
- 一个新的对踵点对产生了。 计算新距离, 与当前最大值比较, 如果大于当前最大值则更新。 如果两条线同时与边发生重合, 此时总共三个对踵点对(先前顶点和新顶点的组合)需要考虑在内。
- 重复执行步骤4和步骤5, 直到新的点对为(yminP,ymaxQ)。
- 输出最大距离。
旋转卡壳模式确保了所有的对踵点对都被考虑到。 此外, 整个算法拥有线性的时间复杂度, 因为(除了初始化), 执行步数与顶点数相同。
类似的算法可以被用于凸多边形间最小距离问题中。
原文地址:http://cgm.cs.mcgill.ca/~orm/maxd2p.html