CNN入门讲解:如何理解卷积神经网络的结构

本文是关于卷积神经网络(CNN)的入门讲解,探讨了CNN的结构,包括卷积层、采样层和全连接层。通过对比人眼识别图像的过程,解释了卷积在网络中的作用,如何通过特征提取和降维减少参数,以及级联分类器的概念,帮助初学者理解CNN的工作原理。
摘要由CSDN通过智能技术生成


原创文章,一家之言。

个人公众号:follow_bobo

知乎号:蒋竺波

转载请通知本人。


大家好,我是波波,欢迎再次来到CNN入门讲解。


上次我们讲什么卷积以及卷积在卷积神经网络里的作用,那我们这一期来理一理卷积神经网络大致的结构






















吗?

我不!!


惊不惊喜?!


抱歉,我就是这样一个水性杨花,做事看心情的美男子。


不服,请点赞。



哈哈哈哈哈哈哈哈哈哈asdo8uh2ojkladojadb183789@&^EU#(kjt








(一阵尴尬的沉默)




上一期我们讲了,卷积实际上可以充当一个对原图像进行二次转化,提取feature 的作用,

相当于信号处理的滤波器,大家可以再去了解一下高斯滤波,拉普拉斯滤波等,这些都可以写成卷积的形式

比如这样:

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值