Vijos 1773题:质因数

描述

质因数分解是有着重要意义的问题。
已知正整数n是两个不同的质数的乘积,试求出较大的那个质数。

格式

输入格式

输入只有一行,包含一个正整数n。

输出格式

输出只有一行,包含一个正整数p,即较大的那个质数。

样例1

样例输入1

21

样例输出1

7

限制

1s

提示

对于60%的数据,6 ≤ n ≤ 1000。 对于100%的数据,6 ≤ n ≤ 2 * 10^9。


#include<iostream>

using namespace std;

int main()
{
	int n;
	while (cin >> n)
	{
		for (int i = n - 1; i >1; i--)
		{
			if (n%i == 0)
			{
				cout << i << endl;
				break;
			}
		}
	}
	return 0;
}
### 回答1: 根据唯一分解定理,正整数n可以唯一地分解为若干个质数乘积。因为n是两个不同质数乘积,所以n的质因数分解式为n=pq,其中p和q是两个不同质数。 由于p和q都是质数,所以它们都大于1。因此,p和q中较大的那个质数就是max(p,q)。因此,我们只需要比较p和q的大小,就可以求两者中较大的那个质数。 ### 回答2: 首先,可以将正整数n唯一地分解为两个质数乘积,即 $n=pq$,其中p和q都是质数,且 $p≠q$。 为了求两者中较大的那个质数,我们可以先求n的所有因数,然后找其中的质数因数。由于n是一个正整数,其因数应该是由p和q的所有可能的组合得到的。因此,我们可以列n的所有因数如下: 1, p, q, n 接下来,我们需要判断哪些因数是质数。由于p和q都是质数,因此只需要判断它们是否在因数中现即可。由于p和q是不同质数,它们不可能同时现在n的因数中。因此,我们只需要找p和q中的较大者即可。 为了判断p和q中的哪一个较大,我们可以假设p比q小,然后根据这个假设列p和q的大小关系如下: $p<q<n/q$ 等式的左边 $p<q$ 很显然是成立的。对于右边 $n/q$ ,我们可以将它写成 $n/q=pq/q=p$ ,也就是说 $n/q>p$ ,这个不等式等价于 $q>p$ 。 综合上面的不等式,得$p<q$且$q>p$,这显然是一个矛盾的结论。因此,假设$p<q$不成立,应该假设$p>q$,同理列$p>q$且$p<q$的矛盾,得$p=q$不成立,所以 $p>q$,即p是两个质数较大的那个。 综上所述,我们可以得到结论:如果正整数n是两个不同质数乘积,那么两者中较大的那个质数就是n的较大质因数p。 ### 回答3: 首先,我们可以写n的质因数分解式: $$n=p \times q$$ 其中,p和q是两个不同质数,且$p<q$。 现在我们要求两个质数较大的那个,可以将两个质数进行比较,即判断$p$和$q$哪一个更大。 由于$p<q$,所以我们只需要判断$q$是否大于$\sqrt{n}$。如果大于$\sqrt{n}$,那么$q$就是较大质数;如果小于或等于$\sqrt{n}$,那么$p$就是较大质数。 证明如下: 假设$q\leq \sqrt{n}$,则有$p\geq \sqrt{n}$。 因为$n=p\times q$,所以$p\leq \sqrt{n}$,与$p\geq \sqrt{n}$矛盾。 所以$q>\sqrt{n}$,即$q$为较大质数。 总结: 已知正整数n是两个不同质数乘积较大的那个质数就是大于$\sqrt{n}$的那个质数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值