LeetCode 198. 打家劫舍
1.dp
首先考虑最简单的情况,如果只有一间房,则偷窃该房可以达到最高总金额。如果只有两间房屋,因为不能同时偷窃相邻的,因而选择最大的那个。
d
p
[
i
]
表
示
前
i
间
房
屋
能
偷
窃
到
的
最
高
总
金
额
dp[i]表示前i间房屋能偷窃到的最高总金额
dp[i]表示前i间房屋能偷窃到的最高总金额
那
么
这
里
的
边
界
条
件
为
d
p
[
0
]
=
=
n
u
m
s
[
0
]
,
d
p
[
1
]
=
n
u
m
s
[
1
]
那么这里的边界条件为dp[0]==nums[0],dp[1]=nums[1]
那么这里的边界条件为dp[0]==nums[0],dp[1]=nums[1]
状
态
转
移
方
程
:
d
p
[
i
]
=
m
a
x
(
d
p
[
i
−
2
]
+
n
u
m
s
[
i
]
,
d
p
[
i
−
1
]
)
状态转移方程:dp[i]=max(dp[i-2]+nums[i],dp[i-1])
状态转移方程:dp[i]=max(dp[i−2]+nums[i],dp[i−1])
class Solution {
public:
int rob(vector<int>& nums) {
int n=nums.size();
if(n==0)return 0;
if(n==1)return nums[0];
int dp[n];
for(int i=0;i<n;i++)dp[i]=0;
dp[0]=nums[0];
dp[1]=max(nums[0],nums[1]);
for(int i=2;i<n;i++){
dp[i]=max(dp[i-2]+nums[i],dp[i-1]);
}
return dp[n-1];
}
};
2.滚动数组+dp
class Solution {
public:
int rob(vector<int>& nums) {
int n=nums.size();
if(n==0)return 0;
if(n==1)return nums[0];
int fir=nums[0],sec=max(nums[0],nums[1]);
for(int i=2;i<n;i++){
int tmp=sec;
sec=max(sec,fir+nums[i]);
//注意上面的sec已经更新了
// fir=sec;
fir=tmp;
}
return sec;
}
};
对上面一道题改编:和第 198 题的不同之处是,这道题中的房屋是首尾相连的,第一间房屋和最后一间房屋相邻,因此第一间房屋和最后一间房屋不能在同一晚上偷窃。
LeetCode 213. 打家劫舍 II
1.dp
思路和198差不多,只不过用了两次dp而已。
关键在于如何才能保证第一间房间和最后一间房间不能同时偷窃?
如果偷窃了第一间房间,则不能偷窃最后一间房间,偷窃范围是[0,n-2]
如果偷窃了最后一间房间,则不能偷窃第一间房间,偷窃范围是[1,n-1]
写一个函数robRange传入start和end
class Solution {
public:
int robRange(vector<int>& nums,int start,int end){
int n=nums.size();
int dp[n+1];
memset(dp,0,sizeof dp);
dp[start]=nums[start];
dp[start+1]=max(nums[start],nums[start+1]);
for(int i=start+2;i<=end;i++){
dp[i]=max(dp[i-1],dp[i-2]+nums[i]);
}
return dp[end];
}
int rob(vector<int>& nums) {
int n=nums.size();
if(n==1)return nums[0];
else if(n==2)return max(nums[0],nums[1]);
return max(robRange(nums,0,n-2),robRange(nums,1,n-1));
}
};
2.dp+滚动数组
class Solution {
public:
int robRange(vector<int>& nums,int start,int end){
int fir=nums[start],sec=max(nums[start],nums[start+1]);
for(int i=start+2;i<=end;i++){
int tmp=sec;
sec=max(fir+nums[i],sec);
fir=tmp;
}
return sec;
}
int rob(vector<int>& nums) {
int n=nums.size();
if(n==1)return nums[0];
else if(n==2)return max(nums[0],nums[1]);
return max(robRange(nums,0,n-2),robRange(nums,1,n-1));
}
};
LeetCode 740. 删除并获得点数
关键是抓住:
同步删除-1 and +1元素(对应数组index)=不能同时选择邻居偷窃
删除这个元素获得的点数=可以抢劫的金额
本题预处理数组后就是以上打家劫舍的问题:记元素x在数组中出现的次数为
c
x
c_x
cx,可以用一个数组sum记录数组nums中所有相同元素之和,即
s
u
m
[
x
]
=
x
∗
c
x
sum[x]=x*c_x
sum[x]=x∗cx。若选择了x,则可以获取sum[x]的点数,且无法再选择x-1和x+1。在统计出sum数组后,就是198.打家劫舍的问题了。
class Solution {
private:
int rob(vector<int> &nums){
int n=nums.size();
int fir=nums[0],sec=max(nums[0],nums[1]);
for(int i=2;i<n;i++){
int tmp=sec;
sec=max(fir+nums[i],sec);
fir=tmp;
}
return sec;
}
public:
int deleteAndEarn(vector<int>& nums) {
int maxVal=0;
for(int val:nums){
maxVal=max(maxVal,val);
}
vector<int> sum(maxVal+1);
for(int val:nums){
sum[val]+=val;
}
return rob(sum);
}
};