小易将n个棋子摆放在一张无限大的棋盘上。第i个棋子放在第x[i]行y[i]列。同一个格子允许放置多个棋子。每一次操作小易可以把一个棋子拿起并将其移动到原格子的上、下、左、右的任意一个格子中。小易想知道要让棋盘上出现有一个格子中至少有i(1 ≤ i ≤ n)个棋子所需要的最少操作次数.
输入描述:
输入包括三行,第一行一个整数n(1 ≤ n ≤ 50),表示棋子的个数
第二行为n个棋子的横坐标x[i](1 ≤ x[i] ≤ 10^9)
第三行为n个棋子的纵坐标y[i](1 ≤ y[i] ≤ 10^9)
输出描述:
输出n个整数,第i个表示棋盘上有一个格子至少有i个棋子所需要的操作数,以空格分割。行末无空格
如样例所示:
对于1个棋子: 不需要操作
对于2个棋子: 将前两个棋子放在(1, 1)中
对于3个棋子: 将前三个棋子放在(2, 1)中
对于4个棋子: 将所有棋子都放在(3, 1)中
示例1
输入
4
1 2 4 9
1 1 1 1
输出
0 1 3 10
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Scanner;
//堆棋子
public class Ztry3 {
static Integer x[],y[];
static int n,xma,yma;
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
n=sc.nextInt();
x=new Integer[n];
y=new Integer[n];
for(int i=0;i<n;i++) x[i]=sc.nextInt();
for(int i=0;i<n;i++) y[i]=sc.nextInt();
xma = (int) Collections.max(Arrays.asList(x));
yma = (int) Collections.max(Arrays.asList(y));
//System.out.println("xma="+xma+"yma="+yma);
if(n==1) System.out.println(0);
else{
System.out.print(0);
solve();
}
}
public static void solve(){
List<ArrayList<Integer>> bglist=new ArrayList<ArrayList<Integer>>();
for(int i=0;i<n;i++){
bglist.add(new ArrayList<Integer>());
}
for(int i=1;i<xma+1;i++)
for(int j=1;j<yma+1;j++){
List<Integer> list=new ArrayList<>();
for(int k=0;k<n;k++){
int temp=Math.abs(x[k]-i)+Math.abs(y[k]-j);
list.add(temp);
}
Collections.sort(list);
int sum=0;
for(int m=0;m<n;m++){
sum=sum+list.get(m);
bglist.get(m).add(sum);
}
}
for(int i=1;i<n;i++){
int ans=Collections.min(bglist.get(i));
System.out.print(" "+ans);
}
}
}