自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(65)
  • 问答 (2)
  • 收藏
  • 关注

原创 百度智能云使用体验——人像分割

您可通过应用的 API Key和 Secret Key获取Access_token来调用百度AI服务;为了您的财产和服务安全,请妥善保存和定期更新Secret Key。在网上找人像分割,懒得自己写,看到了百度智能云,有一说一,还挺多的,摸索了下就上手使用了。我这次选择的是开放平台->人脸与人体->人像特效->人像分割。再点击创建应用,得到api_key和secret_key。大家可以先传张图片试试,在功能演示看看效果。,通过代码方式获取Access_token。

2025-01-15 10:42:33 162

原创 LLM之大模型Base、Chat、Instruction之间的区别了解

在大模型的使用当中,我们常常能看到三种模型:基座模型(base)、聊天模型(chat)和指令模型(instruct),在选用的时候,有时候还挺纠结的,就将它们的区别学习记录了下。

2025-01-06 17:54:23 281

原创 LLM之大模型精度(fp32、fp16、bf16等)学习记录

float类型,是由IEEE定义的标准浮点数类型 ,由符号位(sign)、指数位(exponent)和尾数位(fraction)三部分组成,以float32举例,它使用1位做符号位,8位做指数位,23位做尾数位,图片实例如下:整个浮点数可表示为,其中s为符号位-1或1,t为尾数,i为指数。

2025-01-06 11:57:43 790

原创 GraphRAG:LLM之Graphrag接入milvus

微软目前的graphrag更像个demo,数据量大的时候不是很友好的啊,所以将milvus接入了graphrag,看完这篇文章,其他数据库接入应该也没问题注:这篇文章只是在search的时候接入进来,index过程或者说整个流程接入有时间再写一遍博客。

2025-01-03 14:09:11 955

原创 算法学习之贪心算法

记录一下,免得又又忘了。

2024-12-08 20:06:28 1541 1

原创 跑模型——mqtt使用笔记

跟fastapi一样,怕要用的时候忘记了,先简单记录一下。

2024-12-05 10:13:31 182

原创 跑模型——fastapi使用笔记

被要求提供一个接口,我顿时就懵了,咋提供来着,之前学的又忘了,悔不当初,吓的我赶紧记录一下。

2024-12-05 09:53:46 232

原创 GraphRAG:LLM之Graphrag的index过程——datashaper操作讲解(二)

位于graphrag\index\verbs\zip.pyto: str,"""## UsageTODO"""= 2:如果type参数为None,则将指定的列通过zip函数组合成一个新的列表,并创建一个新列 text_with_ids如果type为字典类型,则将id赋给key_col,text赋给value_col,然后通过迭代传入的input的每一行,将两个指定的列组合成一个字典,并将这个字典添加到结果列表results中,然后在表上创建新列text_with_ids并赋值results。

2024-12-03 17:16:25 759

原创 GraphRAG:LLM之Graphrag的index过程——datashaper操作讲解(一)(文本块向量化函数等等)

,"args": {},},简单的讲就是将文本块进行向量化,在graphrag中是执行自定义的 text_embed函数,将raw_content列中的文本块向量化之后存入raw_content_embedding中源码位于graphrag\index\verbs\text\embed\text_embed.py**kwargs,vector_store_config = strategy.get("vector_store") #默认为Noneinput,callbacks,

2024-12-03 10:04:19 1430

原创 LLM之milvus的使用记录

如果像我一样在服务器上跑着,想在本地电脑上看的话,就在MILVUS_URL输入服务器的ip就行啦,然后attu:v 版本尽量接近你milvus的版本就行。执行下面这行代码,再重复上面的代码,当然如果你网络不好,可能就需要考虑添加镜像源啥的了。安装好milvus docker之后,哪怕milvus在运行着都可以继续接下来的步骤哦。如果没有安装过docker-compose,会报。会显示你在运行中的容器,这边安装好之后会出现。

2024-11-27 14:18:41 962

原创 LLM之学习笔记(一)

记录一下自己的学习历程,也怕自己忘掉了某些知识点。

2024-11-27 13:37:30 1120

原创 LLM之基于llama-index部署本地embedding与GLM-4模型对rag系统进行测评

当然llama-Index 还提供了测试数据的生成功能,可以帮助我们轻松地生成评估所需的测试数据,包括评估的问题、参考答案等,这样我们就可以快速地进行评估工作,而不需要花费大量的时间去准备测试数据。Context Relevancy 是评估 Context 和 Question 的相关性,这个指标可以帮助我们评估检索到的文档上下文和问题的相关性。Answer Revelancy 是评估 Answer 和 Question 的相关性,这个指标可以帮助我们评估生成的答案是否和问题相关。

2024-09-25 13:32:32 662 1

原创 GraphRAG:LLM之使用neo4j可视化GraphRAG运行结果

微软开源的GraphRAG是真的不好用,起码现在是,太多吐槽点了。

2024-09-04 16:32:00 675

原创 Docker之基于Ubuntu安装

前言小老弟,我觉得你工作上会用上它滴有时间再来介绍吧开始安装:官方操作文档:https://docs.docker.com/engine/install/ubuntu/二、设置apt仓库三、安装Docker四、配置国内镜像源 五、重启Docker 显示docker系统信息启动或关闭docker查看容器 启动、停止、重启容器 先写到这里吧欢迎大家点赞或收藏~大家的点赞或收藏可以鼓励作者加快更新哟~作者也新建了一个学

2024-08-30 11:35:08 490

原创 LLM之ollama对话系统简易框架(python)

略。

2024-08-26 14:24:02 356

原创 LLM之基于Ragas利用本地数据、本地模型构造测试数据集,测试RAG

这回还是粗略写写前言吧,构建好RAG系统之后,你总得去进行测试吧,那么如何测试呢?用什么指标去衡量呢?测试数据集怎么构建呢?这里使用Ragas对RAG系统进行测试,而Ragas又基本是OPENAI的接口,那是要钱钱的,所以就研究使用本地模型去跑Ragas简介不想写,有空再写。

2024-08-20 16:10:15 1153 10

原创 LLM之基于llama-index部署本地embedding与GLM-4模型并初步搭建RAG(其他大模型也可,附上ollma方式运行)

前言日常没空,留着以后写官网:https://docs.llamaindex.ai/en/stable/简介也没空,以后再写如果没有找到 llama_index.embeddings.huggingface那么:pip install llama_index-embeddings-huggingface还不行进入官网,输入huggingface进行搜索 加载本地LLM模型还是那句话,如果以下代码不行,进官网搜索Custom LLM Model 欢迎大家点赞或收藏大家的点赞或收藏可以鼓

2024-08-20 14:31:38 2089

原创 GraphRAG:LLM之本地部署GraphRAG(GLM-4+Xinference的embedding模型)(附带ollma部署方式)

有空再写微软开源的GraphRAG默认是使用openai的接口的(GPT的接口那是要money的),于是就研究了如何使用开源模型本地部署。

2024-07-31 13:28:47 3226 11

原创 LLM之使用ollma本地搭建RAG系统

我的是 ollama pull gemma2 或者 ollama pull qwen2:0.5b。选择一个down下来:ollama pull mxbai-embed-large。随后再输入 ollama serve,开启ollama。官网有介绍不同操作系统的下载方式。ollama的LLM模型选一个。然后输入ollama。

2024-07-29 10:44:39 512

原创 python图像处理之二维码识别(使用opencv接入微信开源模型)

虽然pyzbar挺好用的,但微信、支付宝的二维码识别是真逆天,有木有,很多场景几个开源库识别不了,但是人家就是能用。

2024-07-24 17:45:40 995 3

原创 torch之从.datasets.CIFAR10解压出训练与测试图片 (附带网盘链接)

当然可以自行调整将它们都合在一个文件夹里面,个人喜好。从官网上下载的是长这个样子的。想看图片,咋办咧,看下面代码。

2024-07-12 11:34:35 409

原创 AIGC之Stable Diffusion Web Ui 初体验

1、在下载完源码之后,进入该目录,Linux系统,在控制台运行./webui.sh,Windows系统,直接双击运行webui.bat文件,如果出现下载一半中断的情况,无效慌张,重复操作,继续下载。网上有很多安装Stable Diffusion Web Ui 的介绍了,我在这说一下我的踩坑记录。5、如果你想像我一样,将环境安装在服务器或者其他电脑,然后在局域网内使用自己电脑使用这个。我这边是使用服务器安装的环境,然后在局域网内的电脑进行连接使用的。改成你安装环境的IP和想要的端口号就行啦。

2024-06-04 16:01:07 706

原创 AIGC之Stable diffusion Version 2_ open_clip.create_model_and_transforms报错问题解决

将version替换成version=“openai/CLIP-ViT-H-14-laion2B-s32B-b79K/open_clip_pytorch_model.bin”链接:https://pan.baidu.com/s/1zvwrwcf-4c5CSJmJmhOiQw?缺少CLIP-ViT-H-14-laion2B-s32B-b79K模型,代码会自动从网上下载,但会报错。路径:ldm.modules.encoders.modules.py文件。

2024-05-30 16:54:09 1008

转载 AIGC之Can‘t load tokenizer for ‘openai/clip-vit-large-patch14‘

需要手动创建openai 目录并把 下载后解压的资源拖入到openai目录下面,我自己连代码都不用改。clip-vit-large-patch14 国内已经不能访问了。在跑Stable Diffusion v1系列的时候遇到了。另外如果不行的话,可以去官网下载。

2024-05-30 11:51:25 474

原创 半自动标注(使用自己的分割或检测模型推理完得到的矩阵再生成json文件)

都知道标注很麻烦、很累,不然先训练一批,然后推理得到它的掩码图,先生成自动标注,再人工手动修改也许会快很多。

2024-05-15 15:23:39 283 7

原创 语义分割之使用自己的代码进行数据增强(labelme的json文件)

注释掉的部分 是对json文件的修改 如果大家想顺便修改json文件就将注释给删去。网上的包,写着写着,就不耐烦了,还是自己写吧。没时间优化 凑合着用 哈哈哈。

2024-05-09 11:40:14 696

原创 跑模型——labelme的json文件转成yolo使用的txt文件(语义分割,目标检测需要自己改改)

将labelme多边形标注的json文件转换成yolo使用的txt文件。如果有什么不懂的,可以在评论区底下评论哦,我会努力解答的。

2024-04-09 14:16:42 890 2

原创 跑模型——多次推理后显存累计的问题

做项目的时候,发现随着多张图片进行并行计算的时候,占用的显存没有随着程序的结束而自动消除掉申请的显存。

2024-03-19 16:18:24 1420

原创 python图像处理——图像压缩(调整图片的存储大小)

很多时候拍的图片都是几百KB 甚至多少M来算的,有时候证件照要求的又很小,作为一个程序员,总不能老是在网上找压缩的吧,而且又麻烦,不如自己用程序跑跑啦。

2024-03-10 12:02:00 1095

原创 图像识别之ResNet(结构详解以及代码实现)

在人工智能的浪潮中,深度学习已经成为了推动计算机视觉、自然语言处理等领域突破的关键技术。在这众多技术中,ResNet(残差网络)无疑是一个闪耀的名字。自从2015年Kaiming He等人提出ResNet架构以来,它不仅在图像识别领域取得了革命性的进展,更影响了后续神经网络设计的诸多方面。那么,什么是ResNet?简而言之,ResNet是一种深度卷积神经网络(CNN),其核心创新在于引入了“残差学习”的概念,通过残差块(residual block)的设计优雅地解决了深度网络训练中的退化问题。

2024-02-18 15:45:55 3615

原创 pytorch——保存‘类别名与类别数量’到权值文件中

不知道大家有没有像我一样,每换一次不一样的模型,就要输入不同的num_classes和name_classes,反正我是很头疼诶,尤其是项目里面不止一个模型的时候,更新的时候看着就很头疼,然后就想着直接输入模型权值文件的path该多好,然后我就搞起来了。

2024-02-05 13:55:40 707

原创 labelme之批量生成掩码图(复制代码直接可用)

当你看到这篇文章的时候,说明你在面临着标数据,这个巨烦的工作啦,我表示我懂,很难受。然后labelme又不支持批量转换的,看网上的教程好多说要找到labelme的某个文件呀,然后在复制粘贴上去呀,在用命令行生成json文件夹的,老麻烦了,虽然我以前就是这么干的,但是干着干着就想偷懒了,所以自己翻看了labelme的代码,抽取出来用,自己用程序一步到位。

2024-02-01 18:40:20 1060 3

原创 python 简单实现日志功能以及实现每天自动产生新的日志文件

做项目的时候,将代码的输出结果以日志的方式保存下来,是很有必要的在python中,内置了一个日志模块logging,用来输出日志信息,我们可以进行配置各种参数,从而满足我们大部分场景对日志的需求。

2024-01-30 17:21:52 2914 2

原创 语义分割之Unet

随着计算机视觉技术的不断发展,图像分割已经成为了计算机视觉领域的一个重要研究方向。在众多的图像分割算法中,语义分割作为一种能够对图像中的每个像素进行分类的方法,具有很高的实用价值。近年来,基于深度学习的语义分割方法取得了显著的成果,其中Unet网络作为一种特殊的卷积神经网络结构,在语义分割任务中表现出了优越的性能。

2023-12-07 11:10:55 1112

转载 视觉学习之注意力机制(SE、ECA、CBAM)

没空写,先看这个应急吧,写的还怪好咧。

2023-11-28 16:07:12 423

转载 跑模型之torch.nn.DataParallel

没时间写,凑合先看着。

2023-11-13 16:20:02 126

原创 跑模型——常用模块之torch.load() 、torch.load_state_dict()

在深度学习中,训练好的模型需要保存下来以便后续使用。PyTorch提供了torch.save()和torch.load()函数来保存和加载模型。但是,这两个函数只能保存整个模型的状态字典(state_dict),而不能保存其他信息,如优化器、损失函数等。为了解决这个问题,PyTorch提供了torch.load_state_dict()函数,它可以加载整个模型的状态字典以及其他相关对象。本文将介绍如何使用这些函数来保存和加载模型。

2023-11-09 18:10:58 394

原创 跑模型——常用模块之torch.cuda

PyTorch作为一款流行的深度学习框架,提供了许多用于GPU加速的函数和模块。其中,torch.cuda模块是PyTorch中最重要的GPU加速模块之一,它提供了许多用于管理GPU内存、数据转移等操作的函数。本文将介绍一些常用的torch.cuda函数,帮助读者更好地利用GPU加速训练深度学习模型。

2023-11-09 16:22:13 311

转载 跑模型——常用模块之os.environ

os.environ 是一个字典,是环境变量的字典,通过 os.environ 我们可以获取环境变量,例如“HOME” 是这个字典里的一个键,如果有这个键,返回对应的值,如果没有,则返回 noneos.environ['环境变量名称']='环境变量值' #其中key和value均为string类型os.putenv('环境变量名称', '环境变量值')os.environ.setdefault('环境变量名称', '环境变量值')

2023-11-09 15:12:49 336

转载 跑模型——常用模块之easydict模块

easydict的作用和其名字一样,让你更easy地使用dict,一句话来概括,easydict允许我们使用属性访问符’.'来访问字典的key。同时使用edict构建的字典,也支持基本的字典操作。首先我们导入该模块。

2023-11-09 14:47:02 566

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除