是去工作呢,还是去培训呢,还是专于毕业设计呢?

     虽然我对这个问题的答案是工作!不过我还是希望听到各位好友能给我些建议~!

     今天大学的考试都结束了,本来是该庆祝下,可是看着身边的同学,有的去培训了,有的实习去了,还有部分回家了,还有部分就跟我一样,在找工作,参加培训,做毕业设计之间徘徊。最近学校的讲座不断,可都是各个公司的宣讲会,起初大家都乐呵呵地去听,可是两三次后大家都不去了,把老师可气着了,呵呵,其实,也不能怪我们不尊重老师,主要是每次的宣讲会没有什么实际意义,都是些来学校拉人去他们公司参加培训,而且每次会议之前的预告跟会议内容大相径庭,每次都被忽悠,大家也自己明白,所以也不愿意浪费时间去被忽悠了。哎~有点伤心,学校、老师怎么可以这样呢,把我们随便一个培训地扔出去就算完事了,太过分了哎!

      既然不想去参加培训嘛,那就找工作咯!找工作也不是那么容易的,我们也交了几份简历给了老师,因为老师说会帮我们留意各个公司的需求再适当推荐我们去,可是也不少时间了,简历交了就没音讯了,这样的方式找工作看来是行不通了。于是,我们尝试自己在网上投简历,都知道网上投简历成功的几率比较低,所以多准备几份简历,由于自己的工作经验几乎没有,项目经验不多,简历写出来总觉得太平淡了,不能够吸引HR的注意力,所以又想。。如果去培训,是不是能改善点。。这个没有尝试过,不知道哎~因为培训都4月以上,而且培训费用也不低,心理不平衡,而且觉得那样是不是时间太长了。。等等的,好多顾虑。。

      找工作没有具体的方向,看到工作的要求时又不够自信,就找实习生职位的,这样是不是合理呢?我们也参加过几次培训,虽然时间不是很长,但是也以完成一个小项目为目的的,不知道还有没有必要再去培训呢?

      毕业设计选题也快开始了,我到底该先做哪个呢?

      写得有点乱,最近确实有点乱,呵呵,如果哪位好友有些好的建议,希望指点指点我喔~!如果哪位有刚毕业者如果选择工作方面的经验,也可以传授我点,不甚感激!

     

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值