Least Recently Used(LRU) Cache

According to LeetCode:

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.

set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

When dealing with (key, vlaue) pairs, the most straight-forward data structure is hashmap(map or unordered_map in C++). However, at least for C++, it is difficult to control the insertion of new items: (1) the position you can specify is just a hint and does not force the new element to be inserted at that position within the map/unordered_map container, and (2) there is no push_back or push_front methods provided for map/unordered_map.

- See more at: http://bo-yang.github.io/2014/06/12/lru-cache/#sthash.Pj0d5XQ1.dpuf

http://bo-yang.github.io/2014/06/12/lru-cache

以下是C++最近最少使用算法(LRU)的示例代码: ```c++ #include <iostream> #include <unordered_map> #include <list> using namespace std; class LRUCache { private: int capacity; unordered_map<int, list<pair<int, int>>::iterator> cache; // 哈希表,映射key和双向链表的迭代器 list<pair<int, int>> lruList; // 双向链表,保存 (key, value) 二元组 public: LRUCache(int capacity) { this->capacity = capacity; } int get(int key) { if (cache.find(key) == cache.end()) { return -1; // 如果 key 不存在,则返回 -1 } // 把 (k, v) 提到链表头部,并更新map该节点的迭代器 pair<int, int> kv = *cache[key]; lruList.erase(cache[key]); lruList.push_front(kv); cache[key] = lruList.begin(); return kv.second; } void put(int key, int value) { if (cache.find(key) == cache.end()) { // 如果 key 不存在 if (lruList.size() == capacity) { // 如果缓存满了 // 删除链表尾部的键值对,并删除map对应的项 auto lastPair = lruList.back(); int lastKey = lastPair.first; cache.erase(lastKey); lruList.pop_back(); } // 在链表头部插入新的键值对,并在map创建该项的迭代器 lruList.push_front(make_pair(key, value)); cache[key] = lruList.begin(); } else { // 如果 key 存在 // 更改链表的节点值,并把该节点提到头部 lruList.erase(cache[key]); lruList.push_front(make_pair(key, value)); cache[key] = lruList.begin(); } } }; int main() { LRUCache cache(2); // 缓存容量为 2 cache.put(1, 1); cache.put(2, 2); cout << cache.get(1) << endl; // 返回 1 cache.put(3, 3); // 该操作会使得关键字 2 作废 cout << cache.get(2) << endl; // 返回 -1 (未找到) cache.put(4, 4); // 该操作会使得关键字 1 作废 cout << cache.get(1) << endl; // 返回 -1 (未找到) cout << cache.get(3) << endl; // 返回 3 cout << cache.get(4) << endl; // 返回 4 return 0; } ``` LRU算法的核心是使用一个双向链表和一个哈希表,其哈希表的键为key,值为指向双向链表的节点的迭代器。每当访问一个节点时,将其从双向链表删除,并将其插入到链表头部,同时更新哈希表的值。当缓存满时,删除链表尾部的节点。当插入一个新的节点时,如果缓存已满,则删除链表尾部的节点。如果缓存未满,则直接插入到链表头部。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值