自由意志源于脑电背景噪



科学研究表明自由意志源于脑电背景噪  
   
  
美国《每日科学》网站6月9日报道,美国加州大学(UC)戴维斯分校心智与脑中心科学 
家的一项新研究表明,人的自由意志可能来源于脑电背景噪声的随机波动。相关论文在 
线发表于最近的《认知神经科学杂志》上。人类可以不靠因果逻辑运算就作出决策,虽 
然有时会决策错误。但自由选择的能力与对错无关,只是自由意志的体现。 
  
宗教界和科学界关于“自由意志”存在争议,部分宗教界人士认为自由意志是人世间“ 
恶”的起源。如果自由意志不存在,按照一些传统宗教观点,就无法解释人世间的罪恶 
。新发现再次证实,自由意志是不存在的,它只是人类在进行随机选择后产生的一种错 
觉。这可能动摇一些宗教的基本观点。 
  
“我们是如何独立于因果规律的制约而行事的?这表明脑中有一种随意的状态,能显著 
影响人们的意愿决策。”论文第一作者、该中心博士后研究员杰西·柏格森解释说,大 
脑有一个正常的“背景噪声”水平,是全脑波动的一种脑电活动模式。在实验中,他们 
能在志愿者作决策之前,根据其脑电活动模式预测出他将要作的决策。 
  
柏格森让志愿者坐在屏幕前,并集中注意力在屏幕中心,同时用脑电图仪(EEG)记录他 
们的脑电活动。他们让志愿者在看到屏幕上出现信号提示时,自主决定向左看或向右看 
,然后报告他们的决定。屏幕上出现向左或向右看的提示是随机的,所以志愿者无法事 
先做好准备。 
  
研究人员发现,这种脑电模式能在信号出现之前1秒钟左右,志愿者尚未意识到自己作了 
决策之前,就预测出他们所作决策的大致结果。“信号出现之前的脑状态,决定了你要 
向左还是向右看。”柏格森说。 
  
本实验是以上世纪70年代加州大学圣弗朗西斯科分校心理学家本杰明·里贝特的一项实 
验为基础,当时是让志愿者看到信号按一个开关。里贝特也在志愿者作出决策之前检测 
到脑电活动。 
  
本研究的新成果是建立了一个模型来描述脑活动为何能先于决策。此外,里贝特的实验 
要依靠志愿者报告他们作决策的时间,而在新实验中,时间是随机的,这表示“我们知 
道他们没有提前作决策”。 
  
里贝特的实验提出了自由意志的问题——如果在我们意识到自己将要行动之前,大脑就 
已准备行动了,我们怎么能作出一个有意识的决策去执行呢?而新研究显示了“脑电噪 
声”可能为自由意志打开出口。柏格森说:“它插入了一个随机效应,允许我们摆脱简 
单的因果规律。” 

内容概要:本文主要介绍了一项基于Pytorch框架搭建神经网络的研究【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)工作,重点实现了DQN算法、优先级采样的DQN算法以及结合人工势场法的DQN算法在避障控制中的应用。研究通过Matlab和Python平台进行仿真与实验,旨在提升智能体在复杂环境中的自主避障能力。文中详细阐述了三种算法的设计思路、网络结构搭建、训练流程及优化策略,并通过对比实验验证了各方法的有效性与性能差异,尤其突出了DQN结合人工势场法在引导智能体快速学习安全路径方面的优势。此外,文档还列举了大量相关的科研方向与技术应用案例,涵盖无人机控制、路径规划、强化学习、力系统优化等多个领域,展示了广泛的科研服务能力和技术积累。; 适合人群:具备一定Python和深度学习基础,熟悉强化学习基本概念的研究生、科研人员及工程技术人员;对智能控制、机器人避障、无人机路径规划等领域感兴趣的开发者。; 使用场景及目标:① 学习DQN及其改进算法(如优先经验回放)在实际控制系统中的实现方式;② 掌握如何将传统人工势场法与深度强化学习相结合以提升避障性能;③ 借鉴Matlab与Python混合仿真方法,开展智能控制算法的实验验证与对比分析;④ 拓展至无人机、无人车等智能体的自主导航系统设计。; 阅读建议:建议读者结合提供的代码资源,逐步复现实验过程,重点关注神经网络结构设计、奖励函数设定及算法收敛性分析。同时可参考文中列出的其他研究方向,拓展应用场景,提升科研创新能力。
内容【2025最新高维多目标优化】无人机三维路径规划的导航变量的多目标粒子群优化算法NMOPSO研究(Matlab代码实现)概要:本文围绕“2025最新高维多目标优化”主题,重点研究基于城市场景下无人机三维路径规划的导航变量多目标粒子群优化算法NMOPSO,并提供了完整的Matlab代码实现。该研究旨在解决复杂威胁环境下无人机路径规划中的多目标优化问题,兼顾路径安全性、能耗、距离与时效等多个目标,通过改进的粒子群算法实现高效搜索与优化。文中详细阐述了算法设计思路、数学建模过程、适应度函数构建及约束处理机制,并结合三维城市环境进行仿真实验验证其有效性。此外,文档还列举了大量相关科研方向与技术资源,涵盖智能优化算法、路径规划、无人机控制、机器学习、力系统等多个领域,展示了广泛的科研应用场景和技术支持体系。; 适合人群:具备一定Matlab编程基础,从事无人机路径规划、智能优化算法或自动化控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究高维多目标优化算法在无人机三维路径规划中的应用;②掌握多目标粒子群优化算法(MOPSO/NMOPSO)的设计与实现方法;③复现并改进复杂环境下的无人机协同路径规划模型;④拓展至其他智能优化与控制问题的研究与仿真。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注算法核心模块的实现细节,如种群初始化、非支配排序、拥挤度计算与动态环境建模。同时可参考文中列出的其他研究案例,拓展技术视野,推动算法在实际科研项目中的迁移与应用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值