动态规划(二)

C. 最长上升子序列

给定一个长度为 𝑛 的数组 𝑎1,𝑎2,…,𝑎𝑛,问其中的最长上升子序列的长度。也就是说,我们要找到最大的 𝑚 以及数组 𝑝1,𝑝2,…,𝑝𝑚,满足 1≤𝑝1<𝑝2<⋯<𝑝𝑚≤𝑛 并且 𝑎𝑝1<𝑎𝑝2<⋯<𝑎𝑝𝑚​​。

输入格式

第一行一个数字 𝑛。

接下来一行 𝑛 个整数 𝑎1,𝑎2,…,𝑎𝑛​。

输出格式

一个数,表示答案。

样例输入
6
3 7 4 2 6 8

Copy

样例输出
4

Copy

数据规模

对于所有数据,保证 1≤𝑛≤1000,1≤𝑎𝑖≤10^{9}

思路:

        这个题明显是一道动态规划的题目,我们可以这样考虑,当当前这个数大于比在他之前的数大的话,并且当前的最长上升子序列的长度要小于在他之前的数的最长上升子序列的长度+1的话,那么当前的最长上升子序列的长度就+1,然后在内层循环的外面求最长上升子序列的长度。最后输出就可以了。

#include <bits/stdc++.h>
using namespace std;
long long num[1005],len_lis[1005];
long long maxx=1,n;
int main() {
    cin>>n;
    for(int i=1;i<=n;i++) {
        cin>>num[i];
    }
    for(int i=1;i<=n;i++) {
        len_lis[i]=1;
        for(int j=1;j<i;j++) {
            if(num[i]>num[j]&&len_lis[i]<len_lis[j]+1) {
                len_lis[i]=len_lis[j]+1;
            }
        }
        if(maxx<len_lis[i]) {
            maxx=len_lis[i];
        }
    }
    cout<<maxx<<"\n";
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值