Residual Attention Network in Image Classification PyTorch 小结
Residual Attention Network
整体的网络结构
从图1可以看出,网络的主体为Residual Unit和Attention Module,其中Residual Unit类似于ResNet的残差结构,其具体的细节不再赘述。值得注意的是,Residual Unit block内部,stride有两个选择1或2。当是2的时候,对应的kernel size是3*3,这时output size会减半;否则就使用kernel size为1的卷积核,并保持跟输入尺寸相同。
网络经过图1的结构堆砌,用PyTorch照着kernel size等敲上去就完事了。下面主要分析一下Attention Module到底是什么结构。
Attention Module
图2有3个stage,下面以stage 2 (3个Attention Module中间的那个) 为例,介绍该结构的细节
注意:
- 原文给出的是r=1,p=1,t=2
- Attention Module的输入图片尺寸和输出尺寸保持一致(由图1也可以看出。feature map (channel) 的数量同时也保持一致)
- 使用nn.MaxPool2d实现down sample,使用nn.UpsamplingBilinear2d实现up saple。下采样和上采样的个数保持一致,从而确保输出的尺寸和输入尺寸一致,这也是attention的核心
- 复现的时候有一个trick,我在图片中用黄色标签标注了。这在原文的架构中没有体现,据复现的大佬说:
I refer to the caffe version. u can consider it as a trick.
我画出了Attention Module的架构图(图3),对应的代码我也贴在了下面,
(注:代码引用自GitHub: https://github.com/tengshaofeng/ResidualAttentionNetwork-pytorch/blob/master/Residual-Attention-Network/model/attention_module.py),感谢!
class AttentionModule_stage2(nn.Module):
# input image size is 28*28
def __init__(self, in_channels, out_channels, size1=(

本文介绍了Residual Attention Network的结构,重点解析了Attention Module的细节,包括网络的整体布局、Attention Module的三个stage,以及如何在PyTorch中实现这一结构。通过下采样和上采样保持尺寸一致,实现特征学习的注意力机制。
最低0.47元/天 解锁文章
2269

被折叠的 条评论
为什么被折叠?



