信号与频谱、信源编码

2.信号与频谱、信源编码

 

2.1信号与频谱

2.1.1正弦信号 积分特性&正交特性

任何复杂的信号都可以分解为一系列不同频率的基本信号之和:正弦信号、复指数信号

欧拉公式发现后,复指数信号取代了正弦、余弦信号的基本地位

正弦余弦信号统称为正弦信号

s(t) = Asin(2pi*f*t+fi)

积分特性:积分区间取正弦信号周期的整数倍时积分为0

正交特性:基波{sin2pift,cos2pift},二次谐波{sin4pift,cons4pift}等谐波组成正弦信号集合

任意两个正弦信号的乘积在基波周期内的积分结果都为0(m != n)

正弦函数和其自身乘积在基波周期内进行积分,结果是T/2(m == n)

 

2.1.2复指数信号

采用复指数运算,比三角函数运算简介

如何理解虚数单位j,一个复数和j相乘,相当于对其逆时针旋转90°

积分特性:在复指数信号的周期整数倍积分结果为0

正交特性:一个复指数信号与另一复指数信号的共轭在基波周期内的积分结果为0,一个复指数信号与自身共轭乘积在基波周期积分结果为T

 

2.1.3离散谱

频谱:清晰的描述构成信号的所有复指数信号的成分

三维频谱:以频率为横轴,将构成信号的所有复指数信号的幅度和初相画到与横轴垂直的复平面上

信源编码 Assignment of CH1 1、 什么是数据压缩,一般分为几类?请列举实例说明。 数据压缩,就是以最少的码数表示信源所发出的信号,减少容纳给定信息集合或数据采样集合的信号空间。 其主要分为两大类型:lossless 和 lossy。其具体分类和实例用图表表示如下: 数据压缩 冗余度压缩(熵编码) lossless 统计编码 霍夫曼编码、游程编码、二进制信源编码等 算术编码 基于字典的编码、LZW 编码等 其他编码 完全可逆的小波分解+统计编码等 熵压缩 (lossy) 特征抽取 分析/综合编码 子带、小波、分类、模型基等 量化 其他 无记忆量化编码 均匀量化、Max 量化、压扩量化等 有 记忆量化 序列量化 预测编码 增量调制、线性预测、非线性预测、自适应预测、运动补偿预测等 其他方法 序贯量化等 分组量化 直接映射 矢量量化、神经网络、方块截尾等 变化编码 正交变换:KLT、DCT、DFT、WHT 等 非正交变换 其他函数变换等 2、 什么是信源编码,他与数据压缩有何关系? 信源编码是一种以提高通信有效性为目的而对信源符号进行的变换,或者说为了减少或消除信源冗余度而进行的信源符号变换。 信源编码的作用有二 : 一是实现模拟信号的数字化传输;二就是设法减少码元数目和降低码元速率,即所谓的数据压缩技术。信源编码理论和数据压缩理论之间没有明显差别。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值