2.信号与频谱、信源编码
2.1信号与频谱
2.1.1正弦信号 积分特性&正交特性
任何复杂的信号都可以分解为一系列不同频率的基本信号之和:正弦信号、复指数信号
欧拉公式发现后,复指数信号取代了正弦、余弦信号的基本地位
正弦余弦信号统称为正弦信号
s(t) = Asin(2pi*f*t+fi)
积分特性:积分区间取正弦信号周期的整数倍时积分为0
正交特性:基波{sin2pift,cos2pift},二次谐波{sin4pift,cons4pift}等谐波组成正弦信号集合
任意两个正弦信号的乘积在基波周期内的积分结果都为0(m != n)
正弦函数和其自身乘积在基波周期内进行积分,结果是T/2(m == n)
2.1.2复指数信号
采用复指数运算,比三角函数运算简介
如何理解虚数单位j,一个复数和j相乘,相当于对其逆时针旋转90°
积分特性:在复指数信号的周期整数倍积分结果为0
正交特性:一个复指数信号与另一复指数信号的共轭在基波周期内的积分结果为0,一个复指数信号与自身共轭乘积在基波周期积分结果为T
2.1.3离散谱
频谱:清晰的描述构成信号的所有复指数信号的成分
三维频谱:以频率为横轴,将构成信号的所有复指数信号的幅度和初相画到与横轴垂直的复平面上