自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(126)
  • 资源 (2)
  • 收藏
  • 关注

原创 基于 KAN神经网络的回归预测【MATLAB】

本文探讨了基于Kolmogorov-Arnold Network(KAN)神经网络的回归预测方法及其MATLAB实现。KAN是一种新兴的神经网络结构,通过将路径权重替换为可学习的一维函数,在函数逼近能力和可解释性方面优于传统多层感知机。文章介绍了KAN的理论基础、相比传统网络的优势,以及它在回归预测任务中的应用流程,包括数据准备、网络设计、训练优化和结果评估。MATLAB实现示例展示了从数据预处理到模型训练的关键步骤,验证了KAN在小样本场景下良好的泛化性能。KAN在金融、能源、工业制造等领域具有广泛应用前

2025-06-17 15:52:49 755

原创 基于 CNN-SHAP 分析卷积神经网络的多分类预测【MATLAB】

卷积神经网络是一种专门用于处理具有网格结构数据(如图像、时间序列等)的人工神经网络。它通过引入卷积层、池化层和全连接层,能够自动提取输入数据中的关键特征,并进行高效的分类与识别。自动特征提取:无需手动设计特征,模型能从原始数据中自主学习有效信息;强大的泛化能力:尤其适用于图像、声音、文本等高维数据;高分类准确率:在多种标准数据集上均取得了优异成绩。卷积神经网络(CNN)凭借其强大的特征提取与分类能力,在多分类任务中表现卓越;而 SHAP 方法则为这些“黑箱”模型打开了可解释性的窗口。

2025-06-09 18:43:20 1296 1

原创 基于小波神经网络(WNN)的回归预测模型【MATLAB】

在数据驱动的时代,小波神经网络(WNN)作为一种结合小波分析与人工神经网络的智能建模方法,因其在处理复杂、波动性强的数据时表现出色而受到广泛关注。WNN通过引入小波基函数,能够在不同尺度上捕捉数据的细节特征,提升模型的泛化能力和拟合精度。其优势包括良好的局部逼近能力、自适应性强、抗噪能力强和训练速度快。在MATLAB平台上,构建WNN模型的基本步骤包括数据准备与预处理、网络结构设计、模型训练、模型评估与测试以及结果可视化。WNN在能源预测、金融市场、工程监测和医疗健康等多个领域有广泛应用。

2025-05-10 15:51:46 973

原创 基于Transformer与SHAP可解释性分析的神经网络回归预测模型【MATLAB】

本文介绍了一种结合Transformer架构与SHAP可解释性分析的神经网络回归预测模型,并在MATLAB平台上实现。Transformer通过自注意力机制有效捕捉多变量间的复杂关系,适用于时间序列预测等回归任务。SHAP方法则基于博弈论,解释模型中各特征对预测结果的贡献,提升模型的可解释性。该模型在工业预测性维护、金融市场预测、环境监测和医疗健康等领域具有广泛应用,不仅提高了预测精度,还增强了模型的透明度和可信度。文章还提供了部分实现代码,展示了数据导入、分析和归一化等步骤。

2025-05-09 16:24:30 1263

原创 基于LSTM与SHAP可解释性分析的神经网络回归预测模型【MATLAB】

将LSTM与SHAP相结合,构建具有可解释性的神经网络回归预测模型,是当前人工智能发展的一个重要方向。这种方法既保留了深度学习强大的时序建模能力,又增强了模型的透明度与可信度,有助于推动AI技术在医疗、金融、能源等敏感领域的落地应用。未来,我们可以进一步探索如何提高SHAP计算效率,或将该框架拓展至其他时序模型(如GRU、Transformer)中,构建更加智能、高效的可解释系统。

2025-05-08 17:13:53 1232

原创 基于CNN与SHAP可解释性分析的神经网络回归预测模型【MATLAB】

将CNN与SHAP相结合,构建具有可解释性的神经网络回归预测模型,是当前人工智能发展的一个重要方向。这种方法既保留了深度学习强大的表达能力,又增强了模型的透明度与可解释性,有助于推动AI技术在更多高风险、高敏感领域的落地应用。未来,我们可以进一步探索更高效的SHAP计算方法,或将该框架拓展至其他类型的深度学习模型(如RNN、Transformer)中,构建更加全面、智能的可解释系统。

2025-05-08 16:51:55 845

原创 基于多策略混合改进哈里斯鹰算法的混合神经网络多输入单输出回归预测模型HPHHO-CNN-LSTM-Attention

HPHHO-CNN-LSTM-Attention模型结合了多个先进的算法与神经网络架构,旨在优化回归任务的预测精度。该模型的核心思想是利用哈里斯鹰优化算法(Harris Hawks Optimization, HHO)和混合神经网络(CNN-LSTM-Attention)相结合,通过多策略优化改进哈里斯鹰算法,进一步提升模型性能。

2025-05-04 14:02:18 1168

原创 基于贝叶斯优化的Transformer多输入单输出回归预测模型Bayes-Transformer【MATLAB】

Transformer模型最初由Vaswani等人于2017年提出,广泛应用于处理序列数据。它的核心在于自注意力机制(Self-Attention),通过在输入数据中捕捉不同位置之间的依赖关系,使得模型能够在长序列中高效地学习到全局信息。在传统的Transformer中,输入和输出都是序列形式的。然而,在回归预测问题中,我们常常处理的是多个输入特征(如时间序列数据中的多个变量)和一个单一输出(如未来某时刻的预测值)。这种多输入单输出的回归任务可以通过Transformer来处理,只需要稍作调整。

2025-04-22 20:37:00 1201 2

原创 基于超启发鲸鱼优化算法的混合神经网络多输入单输出回归预测模型 HHWOA-CNN-LSTM-Attention

HHWOA-CNN-LSTM-Attention模型通过将超启发鲸鱼优化算法(HHWOA)与卷积神经网络(CNN)、长短时记忆网络(LSTM)和注意力机制相结合,旨在提高回归预测的精度和稳定性。超启发鲸鱼优化算法(HHWOA):这是一种用于全局优化的算法,能够优化神经网络的结构和参数,提升训练过程的效率。卷积神经网络(CNN):用于提取输入数据中的空间特征,对于图像数据或时序数据中的局部模式非常有效。长短时记忆网络(LSTM)

2025-04-21 14:55:27 1489 1

原创 【原创新算法】INFO-CFBP基于向量加权优化算法的级联前向传播神经网络多输入单输出回归预测

FC-BP(Cascade Forward Backpropagation)神经网络是一种改进型前馈神经网络,其核心特征在于。

2025-03-07 16:55:06 347

原创 【新算法】基于Transformer-LSTM-Adaboost的多输入单输出回归预测模型【MATLAB】

Transformer-LSTM-Adaboost 通过全局-局部特征联合提取与误差导向动态集成的双重机制,突破了单一模型的特征表达局限性。利用Transformer捕捉长周期规律,LSTM细化短期模式,形成互补特征空间。引入Adaboost.R2的加权策略,通过多基模型集成降低方差偏差。该模型在需同时处理趋势性、周期性和随机性的预测场景中表现突出,尤其适合对预测结果稳定性要求严苛的工业与金融应用。

2025-02-25 14:51:45 1257

原创 基于级联前向反向传播神经网络(FCBP)的数据回归预测【MATLAB】

跨层直接连接:隐藏层神经元可接收前序多个层的输出。动态路径叠加:第lll层神经元的输入由前一层l−1(l−1)l−1和跨层(如l−2l−2l−2l−3l−3l−3等)的输出共同组成。

2025-02-24 15:22:36 715

原创 基于PSO-LSTM长短期记忆神经网络的多分类预测【MATLAB】

在时间序列分类、信号识别、故障诊断等领域,多分类预测任务对模型的时序特征捕捉能力提出了极高要求。传统LSTM网络虽能有效建模长程依赖关系,但其性能高度依赖超参数的选择,例如隐含层神经元数量、学习率、迭代次数等。人工调参不仅耗时费力,还容易陷入局部最优。粒子群优化算法(PSO)作为一种高效的群体智能优化方法,通过模拟鸟群觅食行为,能够在高维空间中快速定位全局最优解。将PSO与LSTM结合,构建PSO-LSTM混合模型,可实现网络参数的自动化寻优,显著提升模型的分类精度与泛化能力。

2025-02-24 14:18:39 360

原创 基于CNN-BiLSTM-selfAttention混合神经网络的多分类预测【MATLAB】

在深度学习中,不同神经网络架构的组合往往可以实现更强大的表现。将卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)和自注意力机制(Self-Attention)结合在一起,可以充分发挥三者的优势。这种混合网络在自然语言处理、时间序列分析等领域的多分类预测中表现卓越。本文将详细介绍该混合网络的原理、结构以及其实现。

2024-12-21 14:00:07 909

原创 基于LSTM长短期记忆神经网络的多分类预测【MATLAB】

在深度学习中,长短期记忆网络(LSTM, Long Short-Term Memory)是一种强大的循环神经网络(RNN)变体,专门为解决序列数据中的长距离依赖问题而设计。LSTM因其强大的记忆能力,广泛应用于自然语言处理、时间序列分析和语音识别等任务中。本文将详细介绍LSTM的原理、结构以及其在多分类预测中的实现。

2024-12-21 13:38:28 725

原创 基于GRU门控循环神经网络的多分类预测【MATLAB】

随着深度学习的不断发展,循环神经网络(RNN)在处理时间序列和自然语言处理等领域表现出了强大的能力。然而,传统RNN存在梯度消失和梯度爆炸问题,导致其在长序列任务中的表现受限。为了应对这些问题,门控循环单元(Gated Recurrent Unit,GRU)应运而生。GRU是一种高效的循环神经网络变体,能够在保持信息的同时减少计算复杂度。本文将详细解析GRU的原理、结构以及其在多分类预测中的应用。

2024-12-20 16:37:05 689

原创 CNN卷积神经网络的多分类预测的MATLAB实现【含完整源代码】

近年来,卷积神经网络(Convolutional Neural Networks,CNN)凭借其卓越的图像处理能力,在计算机视觉领域取得了巨大的成功。从人脸识别到自动驾驶中的场景理解,CNN已经成为深度学习领域的主力军。那么,CNN到底是如何工作的?它的核心结构和原理又是什么?本文将详细解析CNN的核心原理、结构以及其在分类预测任务中的应用。

2024-12-20 16:14:38 1535

原创 蓝桥杯嵌入式入门指南-uwTick滴答定时器【10】

Tick是每隔1ms加1的变量。

2024-12-02 19:55:42 310

原创 蓝桥杯嵌入式入门指南-EEPROM【9】

EEPROM不需要在cubmx中配置引脚,只需加入i2c_hal.c。

2024-12-02 19:53:28 500 1

原创 基于COMSOL的18650锂电池多物理场仿真模型【可设置充放电工况】

锂离子电池作为一种高效的储能技术,已被广泛应用于电动汽车、消费电子以及储能系统中。18650型锂电池因其高能量密度和稳定的循环性能而备受关注。然而,在实际使用过程中,锂电池内部存在电化学反应、热效应和机械应力等多物理场的耦合效应,这对电池性能、安全性和寿命提出了更高的要求。通过COMSOL Multiphysics这一高性能仿真工具,可以实现对18650锂电池内部物理过程的高精度模拟,从而指导优化设计和性能预测。

2024-11-30 10:29:33 1904

原创 蓝桥杯嵌入式入门指南-RTC【8】

【代码】蓝桥杯嵌入式入门指南-RTC【8】

2024-11-30 09:30:34 517

原创 蓝桥杯嵌入式入门指南-UART【7】

【代码】蓝桥杯嵌入式入门指南-UART【7】

2024-11-30 09:27:08 903

原创 蓝桥杯嵌入式入门指南-ADC【6】

tips:可以不用开启过采样。

2024-11-29 18:08:45 197

原创 蓝桥杯嵌入式入门指南-PWM(TIM2&TIM15)【5】

此处为 80 000 000/80/1000 =1000Hz,40%占空比。频率=80 000 000/PSC+1/Counter+1。改变为4Khz,40%占空比。

2024-11-29 17:09:25 336

原创 蓝桥杯嵌入式入门指南-LCD显示【4】

由于是使用液晶驱动参考程序的项目并复制MDK5_LCD_HAL文件夹并重命名为自己项目名称。只需要在User文件夹中添加好lcd.c和lcd.h。main.c中和all.h添加头文件。在all.c中调用函数即可使用LCD。

2024-11-28 10:19:17 222

原创 蓝桥杯嵌入式入门指南-按键KEY(TIM6)【3】

PB0 PB1 PB2 PA0设置为GPIO_input,模式为上拉。记得在all.h中添加key.h,tim.h头文件。输入频率/(PSC*Counter)=中断频率。在bsp文件夹中新建key.c和key.h。将key.c添加到User文件夹。记得在setup里初始化tim6。

2024-11-28 10:15:49 583

原创 蓝桥杯嵌入式入门指南-LED【2】

【代码】蓝桥杯嵌入式入门指南-LED【2】

2024-11-26 10:17:59 190

原创 蓝桥杯嵌入式入门指南-Cubmx和Keil软件配置【1】

新建bsp文件夹,把i2c_hal.c和i2c_hal.h放入其中,找到lcd.c、lcd.h和fonts.h并放入bsp文件夹中。在USER CODE BEGIN Includes放入#include “all.h”复制MDK5_LCD_HAL文件夹并重命名为自己项目名称,例:test。进行时钟树配置,选择HSE——>PLLCLK——>HCLK设置为80。打开嵌入式资源数据包——>竞赛平台——>6-液晶驱动参考程序。新建all.c和all.h并写入。点击生成代码,打开项目。打开test.ioc。

2024-11-26 10:15:02 777

原创 Transformer-Adaboost多输入单输出回归预测神经网络【MATLAB】

Transformer-Adaboost多输入单输出回归预测模型结合了Transformer架构和AdaBoost算法,用于处理时间序列数据或具有多个输入特征的回归任务。

2024-09-16 13:15:26 842

原创 基于LSTM-Adaboost的多输入单输出回归预测神经网络【MATLAB】

LSTM-Adaboost多输入单输出回归预测是一个结合了长短期记忆网络(LSTM)和AdaBoost算法的回归模型,旨在处理时间序列数据或具有时间依赖性的多输入数据。

2024-09-16 12:51:57 1547

原创 Transformer-BiLSTM神经网络多输入单输出回归预测的MATLAB实现

Transformer是一种基于自注意力机制的神经网络架构,最初由Vaswani等人在2017年提出。Transformer通过引入自注意力机制,能够在序列的不同位置之间捕获全局依赖关系,从而显著提升了模型的表达能力。Transformer的核心组件包括:多头自注意力机制:允许模型关注输入序列中的不同位置,同时计算每个位置的加权平均值。位置编码(Positional Encoding):因为Transformer不具备内在的序列顺序信息,需要通过位置编码向模型提供相对或绝对位置的信息。

2024-08-27 13:13:24 2179

原创 Transformer-LSTM神经网络多输入单输出回归预测的MATLAB实现

多输入单输出回归问题在各行各业中都有广泛应用。例如,在电力需求预测中,输入变量可能包括气温、时间、人口密度等,而输出则是某一时间点的电力需求量;在金融市场中,输入变量可能是多种经济指标,而输出则是股票价格或指数的预测值。为了解决这类问题,通常需要使用能够处理多维数据并捕捉复杂时序依赖关系的模型。Transformer 和 LSTM 都是处理时序数据的强大工具。Transformer 模型最早用于自然语言处理任务,但其自注意力机制(Self-Attention)在处理多维数据时表现出色。

2024-08-27 11:42:34 1923

原创 CNN-LSTM神经网络多输入单输出回归预测【MATLAB】

数据预处理:将不同来源的数据转换为适合模型的格式。特征提取:通过CNN提取空间特征。时序建模:通过LSTM建模时序特征。回归预测:通过全连接层生成预测值。CNN-LSTM神经网络在处理复杂、多维度的数据时具有显著优势,尤其适合需要同时处理空间和时序特征的回归预测任务。

2024-08-14 10:17:37 1214

原创 CNN-GRU神经网络多输入单输出回归预测【MATLAB】

多输入:模型可以接受来自不同来源的多种数据输入,这些数据可以是时间序列、图像数据或其他类型的数据。回归预测:将CNN和GRU提取和学习到的特征经过合适的全连接层进行线性变换,得到最终的回归预测结果。时序建模:GRU用于捕捉数据的时序依赖关系。局部感受野:通过卷积操作,CNN能够识别输入数据中的局部特征,从而提取图像、序列或其他类型数据中的重要模式。特征提取和建模:结合了CNN的空间特征提取能力和GRU的时序建模能力,提高了模型的准确性和鲁棒性。特征融合:将CNN提取的空间特征和GRU提取的时序特征结合。

2024-08-14 09:54:25 1416

原创 基于Transformer神经网络的锂离子电池剩余使用寿命估计MATLAB实现【NASA电池数据集】

NASA电池数据集通常用于评估电池健康状态预测算法的性能,包括剩余使用寿命的预测、故障预测等。通过对NASA电池数据集的研究和分析,研究人员可以开发和验证各种电池健康状态预测算法,如RUL预测、故障诊断等,以提高锂离子电池的效率、可靠性和安全性。**模型评估:**使用验证集评估模型的性能,包括计算预测RUL的准确性、精度和其他评价指标,如R²分数、均方根误差(RMSE)等。**数据预处理:**从NASA电池数据集中提取所需的时间序列数据,如电压、电流、温度等,并进行必要的数据清洗和标准化。

2024-07-06 15:45:20 1875

原创 Transformer神经网络回归预测的MATLAB实现

Transformer网络由Vaswani等人在2017年提出,其核心是自注意力机制(Self-Attention Mechanism)。它在处理序列数据时,能够同时考虑序列中所有位置的信息,而不像循环神经网络(RNN)和卷积神经网络(CNN)那样依赖于固定的输入序列顺序。Transformer神经网络在序列数据处理中展现出了强大的能力,其自注意力机制能够有效地捕捉长距离依赖关系,适用于多种回归预测任务,包括但不限于时间序列预测。在实际应用中,需要根据具体任务调整网络结构和参数设置,以达到最佳的预测性能。

2024-07-06 15:13:54 1627

原创 具有交叉验证的加权向量均值算法优化核极限学习机(INFO_KELM)的回归预测MATLAB(源代码)

加权向量均值算法优化的核函数极限学习机(INFO_KELM)的回归预测是一种结合了向量加权平均算法(INFO)和核极限学习机(KELM)的优化方法,用于提高回归预测的准确性和效率。

2024-06-29 12:00:47 497

原创 高创新PSA-CNN-BiLSTM-Attention混合神经网络时序预测的MATLAB实现(源代码)

卷积神经网络(CNN)在时序预测中通常用于从序列数据中提取局部特征。在时序数据中,卷积层可以有效地捕获数据中的空间和时间特征,提取有意义的模式。通过引入注意力机制,模型可以更有效地处理长序列和大量变量的时序数据,提升预测的精确度和鲁棒性。这种混合模型在多变量时序预测、时间序列分类和其他需要复杂模式识别的应用中表现出色,因其能够综合利用不同层次和类型的信息,提高模型对数据特征的理解和利用效率。关注重点特征:通过Attention机制,模型可以动态地学习和调整对序列中不同部分的关注度,提升预测的准确性。

2024-06-29 11:42:00 748

原创 长短期记忆神经网络(LSTM)的回归预测(免费完整源代码)【MATLAB】

LSTM(Long Short-Term Memory,长短期记忆网络)是一种特殊类型的递归神经网络(RNN),专门用于处理和预测基于时间序列的数据。与传统RNN相比,LSTM在处理长期依赖问题时具有显著优势。

2024-06-17 20:27:44 1640

原创 基于分组卷积神经网络(GCNN)的回归预测【MATLAB】

群卷积(Group Convolution),在深度学习和计算机视觉中,特别是在设计高效的卷积神经网络(CNN)结构时,扮演了一个非常重要的角色。群卷积最初是在AlexNet中引入的,用来处理两个GPU的并行计算,但其概念被后续的研究进一步扩展,以提高网络的计算效率和参数效率。

2024-06-17 19:45:33 591

GRU门控循环单元神经网络的MATLAB实现(含源代码)

GRU门控循环单元神经网络的MATLAB实现(含源代码)

2024-01-17

infinity-new-tab-pro.crx

Infinity新标签页是一款基于html5的扩展程序,它将开启你的Chrome新标签页和火狐新标签页高度自定义时代。一步添加常用网站到新标签页并以图标展示,可定制的搜索引擎,精选高清壁纸,还有天气、笔记、书签、待办事项、历史记录、Gmail提醒等小挂件帮助提高生产力。

2020-04-29

学生管理系统.rar

由多个结构体串联而成 老师给我们学习参考使用的 有需要的小伙伴可以拿去参考修改 我也上传到CSDN资源里了 , 链接在最后, 不是我自己做的东西我也不想要大家的积分, 免费分享给大家,希望对大家有帮助。

2020-06-29

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除