分治法解决最大子数组问题

本文介绍如何利用分治策略解决算法导论中的一道经典问题——找到数组中和最大的连续子数组。通过将数组从中间分开,考虑三种情况:子数组完全在左侧、完全在右侧或跨越中点。分治法可以将复杂度降低到nlgn,但代码目前只能求得最大和,无法获取子数组的起始和结束位置。
摘要由CSDN通过智能技术生成

    算法导论中一道很有趣的算法入门题目,问题是解决最大子数组的问题,给你一个数组,要求你求出其中和最大的连续子数组,最简单的思考方式就是暴力求解,对所有的情况都进行组合然后得出最大值,但是这个复杂度是n²,为了减少复杂度,算法导论提供了一种思路,就是用分治法解决最大子数组的问题

我们首先将要求的数组从中间分开,这就意味着最大子数组的求解会分为三种情况:

算法伪代码: ``` // 求解最大数组问题 // 输入:数组 nums,数组起始下标 low,数组结束下标 high // 输出:数组 nums 在下标 low 到 high 之间最大数组的和 function maxSubArray(nums, low, high): // 递归结束条件 if low == high: return nums[low] // 分治求解 mid = (low + high) / 2 leftMaxSum = maxSubArray(nums, low, mid) // 左半部分最大数组和 rightMaxSum = maxSubArray(nums, mid+1, high) // 右半部分最大数组和 crossMaxSum = maxCrossSubArray(nums, low, mid, high) // 跨越中点的最大数组和 // 返回三者中最大的值 return max(leftMaxSum, rightMaxSum, crossMaxSum) // 求解跨越中点的最大数组和 // 输入:数组 nums,数组起始下标 low,数组中点下标 mid,数组结束下标 high // 输出:数组 nums 在下标 low 到 high 之间跨越中点的最大数组的和 function maxCrossSubArray(nums, low, mid, high): // 计算包含中点的左半部分最大数组和 leftMaxSum = -INF sum = 0 for i = mid downto low: sum = sum + nums[i] leftMaxSum = max(leftMaxSum, sum) // 计算包含中点的右半部分最大数组和 rightMaxSum = -INF sum = 0 for i = mid+1 to high: sum = sum + nums[i] rightMaxSum = max(rightMaxSum, sum) // 返回左右两部分加起来的和 return leftMaxSum + rightMaxSum ``` 算法时间复杂度分析: 该算法的时间复杂度为 $O(nlogn)$,其中 $n$ 为数组的长度。因为该算法是一个分治算法,每次递归都将问题规模减半,因此递归层数为 $logn$。在每层递归中,需要线性时间 $O(n)$ 计算跨越中点的最大数组和,因此总时间复杂度为 $O(nlogn)$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值