最全的智慧公园设计方案

本文详细介绍了智慧公园的规划设计,包括安防监控、WiFi覆盖、对讲广播、信息发布、智能交通、报警系统、在线巡查等多个方面,旨在通过先进技术提升公园的安全性和游客体验,打造成为智慧旅游景区的典范。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、项目简介

本次规划地块土地性质为集体土地,其中生态用地约830亩。以发展现代特色旅游为目的,具有休闲度假、生态旅游、文化娱乐等多种功能为一体的风景旅游区、综合性的城市公园。

二、需求分析

城市公园是一个集旅游、休闲、娱乐的公众活动场所,特别是生活在现代巨大压力下的都市人更是喜欢来这里放松一下。庞大的客流量、开放的管理模式使这里成为一个治安防范的重点区域。为了使人们能尽情的享受这里舒适安全的自然环境,就需要在规划设计时充分考虑各种可能的突发事件,运用各种先进的技术及安全防范措施。

建设“智慧公园”已经成为我国旅游业发展的一个新趋势。2015年1月,国家旅游局印发了《关于促进智慧旅游发展的指导意见》;2015年9月,国家旅游局发布了《“旅游+互联网”行动计划》,明确到2018年,将推动全国所有5A级景区建设成为“智慧旅游景区”;到2020年,推动全国所有4A级景区实现免费WIFI、智能导游、电子讲解、在线预订、信息推送等功能全覆盖。本项目的智慧公园建设基础薄弱,需要结合景区发展,进行整体规划,标准打造,构建1加N模式,即“一个平台,N个系统”,实现景区的智慧化升级,打造成为内江地区智慧公园典范工程。

2.1 针对传统景区存在问题分析

而智慧公园通过打造统一平台,设立景区数据中心。构建网络层,通过分层建设,达到平台能及应用的可扩充。创造面向未来的智慧公园系统框架。

2.2 针对游客进入景区常遇到问题

景区智慧导游完美解决了景区导游短缺问题,可图文并茂更全面讲解景区特色。同时也可以结合影像介绍及多国语言等,避免导游水平不一、讲解服务态度不一等问题。做到流程化、规范化。通过对使用人员位置进行判断,可以自动提示相对应景点的讲解。

2.3 景区工作人员面临问题

通过景区收费管理平台自动生成对应财务报表,减少人为工作量。提高工作效率。

三、设计范围

本项目主要从以下几方面进行设计:

智慧公园弱电工程智慧平台建设智慧营销体系

四、安防监控系统设计

为给每一位旅游者提供一个美好的休闲娱乐环境,采用稳定可靠的视频监控系统可以实现对各个景点安全、科学、有效的管理,对旅游区现场实施全天候、全方位24小时监控及人员流动的记录,达到加强现场监督和安全管理,提高服务质量的目的,使工作管理更加规范化、科学化、准确化、智能化、信息化,为旅游区安全工作做好有力保障。构建智能监控系统,实现游览区的物体遗留监测、周界监控、景点禁区防护及人流量统计等功能,更好地实现景区实时监测,数据收集及景区安全保障。

根据园区的实际特点,系统采用分层结构设计。第一层监控前端设计;第二层分控中心设计;第三层总控中心设计。监控前端主要完成视频采集、设备控制。分控中心的主要任务是完成对本区所辖各点的监控。同时在授权允许下可以浏览其他分控中心的监控画面,实现各个分控中心互动。总控中心将完成所有监控点的监控,包括设备管理、用户管理、权限分配、录像文件备份等等。物理拓朴图如下:

4.1 监控前端设计

系统将划分以下五个区域:游客服务中心、剧院、一级园区游览道路、二级园区游览道路、2个停车场区域。

游客中心(重点防护区):在游客中心大厅、寄存处设置高清红外一体摄像机及音频拾音器,同时在接待柜台设置紧急报警按钮。摄像机和拾音器采用吸顶安装或壁装,紧急按钮在柜台下安装。

公园出入口:通过在重要出入口布防高清带客流量统计分析摄像机,通过监控平台可以即时的统计出景区观光游客的人数情况。同时可以在特定子景区出入口进行人数统计,例如:区域栈道,当栈道游人量达到饱和时,通知入口处保安暂时停止游客通行。

剧园、停车场区域:对剧院、出入口、停车场等人员聚集进行智能监控,枪球联动、多目标智能跟踪、人群聚集预警。

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确和稳定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值