kruskal算法是一种使用贪心思路求解无向图的最小生成树的算法。
其大体思路为:将边按权重排序,然后每次选出权最小且不使图产生环的边,作为树的边挂上树。
具体来讲就是这么两个步骤:
1.把边按权重排序。
2.依照1的顺序遍历边:
使用一个并查集来判断加进这条边后图中是否有环。
如果没有环,更新并查集,并把此边加入树。
并查集判断环的回顾:
使用一个数组保存每个点的祖先节点。对于无向图,可以直接按照点的数字大小作为代表元的依据,令值小的为代表元。
如果两个点v,w,判断加入新边e=<v,w>后是否会产生环的思路是:如果v,w加边前的代表元相同,那么就说明v,w间有路,加边后就会成环。
变量使用: 使用edg[]{v1,v2,w}记录每个边的信息,fa[]为并查集,v,e代表图的节点,边数。
以hdu1301为例
#include <bits/stdc++.h>
using namespace std;
const int maxn=200;
struct ed
{
int v1,v2,w;
bool operator <(const ed b) const{return w<b.w;}
}edg[maxn];
int v,e,fa[maxn];
int findfa(int pos)
{
if(fa[pos]==pos)return pos;
return findfa(fa[pos]);
}
void init()
{
memset(edg,0,sizeof(edg));
char c;
int si,cu;
e=1; fa[v]=v;
for(int i=1;i<v;i++)
{
fa[i]=i;
cin>>c>>si;
while(si--)
{
cin>>c>>cu;
edg[e].v1=i;
edg[e].v2=c-'A'+1;
edg[e].w=cu;
e++;
}
}
sort(edg+1,edg+e);
}
int kruskal()
{
int su=0;
for(int i=1;i<=e;i++)
{
int vs=findfa(edg[i].v1),vb=findfa(edg[i].v2);
if(vs!=vb)
{
fa[vb]=vs;
su+=edg[i].w;
}
}
return su;
}
int main()
{
while(cin>>v,v!=0)
{
init();
cout<<kruskal()<<endl;
}
return 0;
}