这道题的题意比较迷,他要求在给定的偏序关系外,按 尽可能把最小的元素最先输出 的顺序,并不是最小字典序,比如,
这样的一个关系,最小字典序是43521,但是在这里,首先1的位置定死了,肯定是最后输出的,然后,为了先输出2,要走52这条路,所以结果是52431 。
可见,2和3制约了5和4的顺序,5和4的顺序对于2和3来说没有影响
如果换掉这两对的顺序,可以看出,此时5,4对于2,3的顺序没有影响,同时2,3对5,4的顺序也没有影响
可以看出,制约关系是和题目中给定的偏序关系相反,这个条件使我们想到可以反向建图
在反向建图后拓扑排序,对于可以肯定的拓扑序就会输出与之正好相反的序
让小的先输出等于让大的后输出,对于反的图,排出反的序,就等于让大的先输出
就引出了具体的做法
反向建表,大根堆做队列,反向输出
#include <bits/stdc++.h>
using namespace std;
const int maxn=30005;
int main()
{
int v,e,in[maxn];
bool vis[maxn];
int tt;
vector<int> adjl[maxn];scanf("%d",&tt);
while(tt--)
{scanf("%d %d",&v,&e);
for(int i=1;i<=v;i++)
{
adjl[i].clear();
in[i]=0;
vis[i]=false;
}
int fr,to;
for(int i=1;i<=e;i++)
{
scanf("%d %d",&fr,&to);
adjl[to].push_back(fr);
in[fr]++;
}
int coun=1;
//top_sort;
priority_queue<int>q;
vector<int>vec;
for(int i=1;i<=v;i++)if(in[i]==0){q.push(i);}
while(!q.empty())
{
int vt=q.top();
vec.push_back(vt);
// cout<<vt<<" "<<q.size()<<endl;
// printf("%d",vt);
// if(coun++!=v)printf(" ");else printf("\n");
q.pop();
for(int i=0;i<adjl[vt].size();i++)
{
in[adjl[vt][i]]--;
if(in[adjl[vt][i]]==0)q.push(adjl[vt][i]);
}
}
for(int i=vec.size()-1;i>0;i--)printf("%d ",vec[i]);
printf("%d\n",vec[0]);
}
return 0;
}