为什么被马斯克解雇了3次,特斯拉自动驾驶团队却越来越强?

本文探讨了汽车厂商建立自动驾驶自研能力的重要性及面临的挑战。特斯拉尽管解雇了自动驾驶团队成员,但团队实力反而增强,关键在于建立了AI芯片开放环境、量产车型、数据处理能力和产品级测试能力这四个“基本工作条件”。其他车厂应避免招聘误区,优先建立这些条件以吸引顶尖人才。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

很多人问我,作为一个汽车厂商,怎么样才能够抓住汽车智能化的时代机遇,建立自动驾驶自研能力,因为其中最让人头疼的就是建立人工智能(AI)自研能力。

车厂已经意识到自动驾驶自研能力非常重要

2021年6月30日,上汽集团董事长陈虹在股东大会回答股东提问时表示,与一家公司合作自动驾驶,它为上汽提供整体的解决方案,上汽是不能接受的。如此一来,它就成了灵魂,而上汽就成了躯体。上汽要把灵魂掌握在自己手中。

图1 上汽要把灵魂(自动驾驶)掌握在自己手中

所以,规模较大的汽车厂商,都已经积极布局,如成立研究院、子公司和人工智能实验室,要把自动驾驶的关键技术掌握在自己手里。

车厂自研算法难落地

传统车厂自研的研发成果往往并不能够进入到量产车型,车型部门更愿意从外部采购算法,理由是自研的算法的成熟度难以和外部供应商的算法的成熟度相媲美。

这是因为传统车厂没有招聘到优秀人才吗?其实不是。

而是因为恶性循环:因为自研算法不成熟,所以量产车型不用,所以自研算法没有成熟机会,循环往复。

图2 车厂自研算法的恶性循环

对于新成立的电动汽车公司,也有类似的问题。创业公司更在乎自动驾驶的自研,因为他们都以特斯拉为榜样,而特斯拉就是自研的自动驾驶和智能座舱。但是,对于新成立的造车公司,人员和经费都非常紧张,一穷二白,怎么样才能够高效的、省钱的建立起自研的自动驾驶团队,这是他们非常苦恼和困惑的地方。

有的造车新势力就走了弯路。一个典型的案例就是南京的拜腾,这家公司还没有造出一辆车的时候就开始从苹果挖高级自动驾驶算法工程师,2018年拜腾拥有300多人的北美办公室仅购买零食就花费了700多万美元(约人民币5000万元),人力成本高昂,但是到最后一辆车也没造出来,自动驾驶算法自研也无从谈起。

车厂自建自动驾驶能力的2大误区

误区一:首先招聘自动驾驶算法大牛。

有家车厂先从自动驾驶算法公司招聘了一个算法高管,但是这家公司的汽车的AI芯片是采用的Mobileye的芯片,车厂并不能在上面编程,自研算法并没有办法跑在已经量产的汽车上。

算法工程师的产出在短时间内并没有能够量产落地的希望,要留出优秀的算法团队是很有挑战的,在工资待遇上要做倾斜。

由于算法工程师是和互联网公司竞争人才,所以优秀算法工程师的工资本来就相对较高,会对传统车厂原有的工资体系形成更大挑战。

而且,加上短期内算法工程师的成果不能落地,公司内会对算法大牛的价值有质疑,会对决策者产生挑战。

误区二:先招聘几个算法工程师做预研。

既然自动驾驶重要不紧急?那先招聘一些资历相对较浅的算法工程师,先做预研吧。这样行吗?

也不行。

有个案例,算法工程师和他的领导发生了冲突。因为算法工程师要求公司给他购买数据,但领导觉得算法工程师没有证明自己的能力,并不愿意在这个时间点购买数据,最后以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值