Scala 在数据科学中的应用与实践
1. 数据科学概述
数据科学如今正处于风口浪尖,全球各地的数据科学初创公司如雨后春笋般涌现,老牌企业也在竞相组建数据科学团队。在学术和研究领域,分析大型数据集的能力也变得愈发重要。
数据科学需求激增的原因,可归结为几个相互关联的因素:
- 数据可得性 :过去十五年间,企业收集的数据量呈爆炸式增长。在研究领域,廉价的基因测序技术极大地增加了基因组数据的数量。社交和职业社交网站构建了庞大的人际关系网络,将地球上相当一部分人联系起来。同时,万维网的发展使得几乎在世界任何地方都能获取这些海量数据。
- 数据意识提升 :数据的广泛可得性提高了人们的数据意识。如今,决策者仅依靠经验和“直觉”已不再被接受,越来越多的人期望商业决策由数据驱动。
- 工具成熟 :能够高效处理和分析海量数据的工具开始走向成熟。例如,Apache Spark 极大地简化了分布式数据分析应用程序的编写,云基础设施的发展也使得计算能力能够根据数据量的变化进行灵活扩展。
2. 为何选择 Scala
Scala 是数据科学领域的热门语言,它强调不可变性和函数式编程结构,非常适合构建用于并发和大数据分析的强大库。围绕 Scala 已经形成了丰富的数据科学工具生态系统,涵盖了访问 SQL 和 NoSQL 数据库的库、构建分布式应用程序的框架(如 Apache Spark)以及用于线性代数和数值算法的库。选择 Scala 进行数据科学工作,有以下几个重要原因:
- 静态类型和类型推断
超级会员免费看
订阅专栏 解锁全文
1167

被折叠的 条评论
为什么被折叠?



