CNN
brave_555
我很懒,没有个人简介。
展开
-
CNN特征图尺寸及感受野计算方式
1.普通卷积 特征图尺寸:o=[(i-k+2p)/s]+1 其中o为output尺寸,k为kernel_size,i为input尺寸,s为步长,p为padding 感受野: a)第一层卷积层的输出特征图像素的感受野的大小等于滤波器的大小; b)深层卷积层的感受野大小和它之前所有层的滤波器大小和步长有关系; c)计算感受野大小时,忽略了图像边缘的影响,即不考虑padding的大小。 2.空洞卷积 ...原创 2019-12-23 10:28:53 · 1787 阅读 · 0 评论 -
CNN基础知识—各种卷积操作
一、常规卷积操作 假设有一个3×3大小的卷积层,其输入通道为3、输出通道为4。 那么一般的操作就是用4个(333)的卷积核来分别同输入数据卷积,得到的输出是只有一个通道的数据。之所以会得到一通道的数据,是因为刚开始3×3×3的卷积核的每个通道会在输入数据的每个对应通道上做卷积,然后叠加每一个通道对应位置的值,使之变成了单通道,那么4个卷积核一共需要(3×3×3)×4 =108个参数。 二、深度可...原创 2019-12-02 16:56:03 · 5541 阅读 · 0 评论 -
cnn常识备忘
1.padding作用:输入输出大小一致,无需考虑大小问题。原创 2019-12-02 16:55:39 · 133 阅读 · 0 评论