高中数学-三角函数之常见题型总结

本文介绍了新教材中涉及的三角函数题目变化,重点讲解了和差化积、积化和差的处理方法,包括正弦、余弦的2倍角和升角降幂公式,以及整体换元法、两角和差公式在解决实际问题中的应用。还提到了如何高效转化tanθ和sin2θ,以及三角函数与均值不等式的结合运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关公式

新教材,取消了和差化积与积化和差的三角函数题目
在这里插入图片描述


例题1

在这里插入图片描述
解析
根据条件tanθ = -2,我们应该就要想到,把待求式的角向θ靠拢
所以要想到如何降角,将化成θ,那么,想到的公式就是:正弦函数的2倍角公式
另外
1 ± sin2θ = (sinθ)^2 + (cosθ)^2 ± 2sinθcosθ = (sinθ ± cosθ)^2
在这里插入图片描述


例题2

在这里插入图片描述
解析
我们看到(A-B)/2、(A+B)/2,但是,待求式的角是A、B
此时,我们应该想到,如何升角,那么,想到的公式就是:正弦余弦的升角降幂公式


例题3

在这里插入图片描述
解析
这道题,有三个角,α、β、β-α
首先,我们要确定三个角的范围
其次,我们要用条件中的两个角α、β-α,去表示出待求是中的角β
显然,α+β-α=β
最后,cosβ=cos(α+β-α),则可以用余弦函数的两角和差公式展开,秒杀。


例题4

在这里插入图片描述
解析
这里只有一个θ角的变量,其他,都是常数
然后,对θ进行加减乘除运算得到的新角
这种情况,我们首先想到,整体换元法,来找到两个角的关系,最终,转化为同角三角函数问题
1、求新角的范围
2、利用公式找关系
这里主要用到了正切函数的二倍角公式和正切函数的两角和差公式
在这里插入图片描述


例题5

在这里插入图片描述
解析
解法1
把sin2θ向tanθ转化
在这里插入图片描述
解法2
将tanθ向sin2θ转化
在这里插入图片描述
显然,第二种方法更简便高效。
所以,遇到tanx,去求sinx,cosx型的题目,建议,把tanx化成sinx/cosx后,计算


例题6

在这里插入图片描述
解析
这一题,将三角函数和均值不等式结合进行考查
从待求式,我们应该要想到,此题用两角和差公式
再由其形式,我们又应该想到,用cos(α±β)
又由于条件给的是α-β,所以,我们最终应该选择cos(α-β)
在这里插入图片描述这样,就转化成均值不等式的问题了
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值