高中数学:直线和圆-直线的倾斜角和斜率

一、直线解析式

y=kx+b

二、倾斜角与斜率

下图中
α就是倾斜角,k=tanα的值就是斜率
α∈[0,π),k∈(-∞,+∞)
在这里插入图片描述
斜率的坐标算法
在这里插入图片描述
注意:垂直的直线,有倾斜角=90°,但是没有斜率!!!

常见考点:
斜率转倾斜角时,要注意倾斜角的范围。
倾斜角转斜率时,要注意90°倾斜角没有斜率。

三、直线的垂直与平行

平行问题,注意排除重合情况。
垂直问题,注意倾斜角为90°的情况。
在这里插入图片描述

四、直线方程

在这里插入图片描述

### 计算图像中检测到的直线斜率 为了计算通过OpenCV检测到的直线斜率,可以在霍夫变换之后进一步处理所获得的直线数据。每条直线由其端点坐标表示,这些坐标可用于计算斜率。 对于一条给定的直线,如果已知两个不同点 \((x_1, y_1)\) \((x_2, y_2)\),那么这条直线斜率 \(m\) 可以按照下面的方式计算: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] 需要注意的是,在实际应用中应该考虑分母为零的情况(即垂直线),此时可以设定斜率为无穷大或者采用其他方式标记这种特殊情况[^1]。 下面是具体的Python代码示例来展示如何利用上述方法计算直线斜率: ```python import cv2 as cv import numpy as np def calculate_slope(lines): slopes = [] for line in lines: for x1, y1, x2, y2 in line: # 防止除数为0错误 if x2 != x1: slope = float(y2 - y1) / (x2 - x1) else: slope = np.inf # 或者可以选择其他的特殊值代表无限斜率 slopes.append(slope) return slopes # 加载并预处理图像... image = cv.imread('rotated_image.jpg') gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) edges = cv.Canny(gray, 50, 150) lines = cv.HoughLinesP(edges, rho=1, theta=np.pi/180, threshold=100, minLineLength=100, maxLineGap=10)[^3] slopes = calculate_slope(lines) for i, s in enumerate(slopes): print(f"Slope of line {i}: {s}") ``` 这段程序首先加载了一张图片,并进行了必要的预处理步骤,包括颜色空间转换、高斯滤波以及边缘检测。接着调用了`HoughLinesP()`函数来进行概率霍夫变换从而找到可能存在的直线段。最后遍历所有发现的直线段,分别求得它们各自的斜率并打印出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值