双曲线和直线联立公式_【巧课易分享】高中数学:直线与抛物线的位置关系

本文详细探讨了高中数学中直线与双曲线的位置关系,讲解了联立方程、弦长计算、设而不求等解题技巧,并通过实例解析了涉及直线与双曲线相交时的几何性质和计算方法,包括弦长、焦点弦长公式等关键知识点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

巧课易教育

【基础回顾】 一、课本基础提炼 1.研究直线与抛物线的位置关系,一般是联立两曲线方程,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”、“整体代入”、“点差法”以及定义的灵活应用. 2.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式2d618d750fde7b7d940d61a43e330f31.png 二、二级结论必备 过抛物线焦点的动直线与抛物线交于点A,B,则该抛物线在点A,B处的两切线的交点轨迹是抛物线的准线. 【技能方法】 1.直线与抛物线相交时的弦长问题 若直线过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用|AB|=x1+x2+p;若直线不过抛物线焦点,则求直线被抛物线截得的弦长|AB|,常用46cd751bb54563ebbf5bddb8ec0dc87e.png,对于此类问题,应熟练地利用韦达定理设而不求计算弦长,另外注意与面积有关的问题,常用到弦长公式. 

例1.已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8. (1)求抛物线C的方程; (2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求03d65dbe37edcc5173010eb0583b0409.png的最小值. 【解析】 (1)由题可知F4ec0e3da10afe97acc1c884573c6cfab.png, 则该直线方程为ceeab24b8a86c29f87f1ccfd21192ffd.png 代入y2=2px(p>0),得7a0d8120f1b49a4915827e738be01a9d.png 设M(x1,y1),N(x2,y2), 则有x1+x2=3p. ∵|MN|=8, ∴x1+x2+p=8,即3p+p=8,解得p=2, ∴抛物线的方程为y2=4x. 65bc45c03c11c5d79c40b7cad2bbce9b.png(2)设直线l的方程为y=x+b,代入y2=4x,得x2+(2b-4)x+b2=0. ∵l为抛物线C的切线,∴Δ=0,解得b=1. ∴l的方程为y=x+1. 设P(m,m+1),则a12fb4dd242cbaa57df0ed6dd7f372bb.png=(x1-m,y1-(m+1)),427c48617a1c1cc80fa64d2220984af3.png=(x2-m,y2-(m+1)), ∴03d65dbe37edcc5173010eb0583b0409.png=(x1-m)(x2-m)+[y1-(m+1)][y2-(m+1)] =x1x2-m(x1+x2)+m2+y1y2-(m+1)(y1+y2)+(m+1)2. 由(1)可知:x1+x2=6,x1x2=1, ∴(y1y2)2=16x1x2=16,y1y2=-4. c147ca3ac7d08b5b67616db970725cec.png 02ff751cfc40fd960069b30dc25527ab.pngd8b8a87c3e16faa0d5f3bd3ed1ce941a.png=1-6m+m2-4-4(m+1)+(m+1)2 =2(m2-4m-3)=2[(m-2)2-7]≥-14, 当且仅当m=2,即点P的坐标为(2,3)时,03d65dbe37edcc5173010eb0583b0409.png的最小值为-14. 例2.抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为7f3e059e67e28d1407714f4c0fa75e3d.png的直线l与线段OA相交(不经过点O或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积. 【解析】由题意,可设l的方程为y=x+m,-5<m<0. 由方程组6ef2f18149beccba0dbc4ccb7fa83629.png,消去y,得x2+(2m-4)x+m2=0 ,① ∵直线l与抛物线有两个不同交点M、N, ∴方程①的判别式Δ=(2m-4)2-4m2=16(1-m)>0, 解得m<1,又-5<m<0,∴m的范围为(-5,0) 设M(x1,y1),N(x2,y2)则x1+x2=4-2m,x1•x2=m2fa7bb6c91398fbbc899571e2e047d782.png 点A到直线l的距离为096334947f86960085cbe695487fd3ba.png 9bfdcc5ec9067ce4df82e5817d6fc2a0.png,从而057c5764136d644e97a96a40bb37d5f0.png=4(1-m)(5+m)2 4cacce10aa6384f1ad8eb2569338d694.png 71c95faeecea38f9054c499c1d4d0165.png,当且仅当2-2m=5+m,即m=-1时取等号. 故直线l的方程为y=x-1,△AMN的最大面积为ed376ef922e1b4d96589fe005d75a3ce.png 2.抛物线的中点弦问题. 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为“点差法”. 例3.已知抛物线y2=4x的一条弦的斜率为3,它与直线dda265ff32d3c512ecc5267cba8115b7.png交点恰为这条弦的中点M,则点M的坐标为_______. 【解析】 设弦端点P(x1,y1)、Q(x2,y2),弦PQ的中点M(x0,y0),则bf9b7913245f44a0b3d3946b253e2943.pngx1+x2=2x0=1,y1+y2=2y0, 又5ae886391330c75006740129ed44f2d1.png 两式相减得(y1+y2)(y1-y2)=4(x1-x2) 即2y0(y1-y2)=4(x1-x2),7581da1c492a1869c7aefa8b085c53be.png 218290f376704f8e8fdede09f2c4af56.png ∴点M的坐标为e7d70d0ad1563aa3ffbcbca63c8fdafa.png 3.抛物线的切线问题 由于抛物线x2=2py(p≠0),可转化为函数d8b899dd559af420f43faa3576524e50.png,因此我们可以借助导数的几何意义来研究抛物线的切线. 例4. 已知抛物线x2=2y,过抛物线的焦点F的直线l交抛物线于P,Q两点,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为________. 【解析】 由x2=2y,得0309c0040293e081fa49689a98ae0102.png,∴y′=x.设P(x1,y1),Q(x2,y2),∴抛物线在P,Q两点处的切线的斜率分别为x1,x2,∴过点P的抛物线的切线方程为y-y1=x1(x-x1),又4066d545d50271ccec570a98eabe5a4a.png∴切线方程为341ddaf0822fb473ab0fa434061b7160.png,同理可得过点Q的切线方程为c2e45c2f3d4cdeed2e91e79829e9a340.png,两切线方程联立解得54bd899b88bcbcfbda3459acfd022516.png 又抛物线焦点F的坐标为298b44df9cc7f2a8d8cf7a9d0e90d464.png,易知直线l的斜率存在,可设直线l的方程为281ce4f20a6c09f72f7d2d9a8f7503c1.png,由33ce674fd3ed3ae3750391e455b818c0.png,得x2-2mx-1=0,所以x1x2=-1,所以d945eb49ca889e5ea00bfeb7f4eee552.png 4.面积问题 求三角形或四边形的面积最值是高考中的常见问题,解决这类问题的基本方法是把面积表示为某一变量的函数,再转化为函数求最值,或利用基本不等式求最值. 例5.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA→•OB→=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是(  ) A.2

B.3 32e050eda0db715d4ab4dc1fe3671b46.png

080669496683746fb5da998ef031a8e2.png 【解析】 设直线AB的方程为x=ny+m(如图), A(x1,y1),B(x2,y2),683bb8663828d64186ca7d45b016d400.png ∴x1x2+y1y2=2. 0957439f58ce18e2e6ac404b92de94a9.png ∴y1y2=-2. 联立76e3e8d35df9e60494cff76064095e39.png得y2-ny-m=0, ∴y1y2=-m=-2, 88d61dda8f1656385221d9720d9bcec3.png∴m=2,即点M(2,0). 又S△ABO=S△AMO+S△BMO d790e4ee414c73807e6ff7f6e7349e0f.png 60f07c16c19bb98ebf8d3494969f9743.png 29ed3fbe9843d6ad23869a7e645d54ea.png b6ba17885e31e22f0e2ad9ba9ca4c86a.png 当且仅当55d55f3d29261a2dc44f931009c7a751.png时,等号成立. 例6.已知抛物线y2=2px(p>0),过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,且|AB|≤2p. (1)求a的取值范围. (2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.af66b9f66d936779d4ab4d4cc976d820.png【解析】 (1)设直线l的方程为:y=x-a,代入抛物线方程得(x-a)2=2px,即x2-2(a+p)x+a2=0 39d934281b30a046c0ccca6bec0cc34c.png.∴4ap+2p2≤p2,即4ap≤-p2 又∵p>0,0fae8855d72cf090f5c25c866bf41fbb.png (2)设A(x1,y1)、B(x2,y2),AB的中点 C(x,y), 由(1)知,y1=x1-a,y2=x2-a,x1+x2=2a+2p, 则有ea449b494264d6197489bd5205e14d8f.png ∴线段AB的垂直平分线的方程为y-p=-(x-a-p),从而N点坐标为(a+2p,0) 点N到AB的距离为501c2820c0163ead7b19b2dcf750c84f.png 从而58e85dad3355ca8524ac29c493f975f7.png 当a有最大值88a0d65a1d916c24dd208404e0c00270.png时,S有最大值为46a71627c68734d3fb0267a1531e3347.png 5.对称问题 根据圆锥曲线上存在不同两点关于某直线对称求参数范围,是一类典型问题,解决此类对称问题,要抓住三点: (1)中点在对称轴上; (2)两个对称点的连线与对称轴垂直; (3)两点连线与曲线有两个交点,故Δ>0.一般通过“设而不求”、“点差法”得到对称点连线的方程,再与曲线方程联立,由判别式不等式求出参数范围. 例7.已知抛物线y=ax2-1(a≠0)上总有关于直线x+y=0对称的相异两点,求a的取值范围. 解: 设A(x1,y1)和B(x2,y2)为抛物线y=ax2-1上的关于直线x+y=0对称的两相异点,则ca00fb41fea08579e0b8f21870bf2b56.png 两式相减,得y1-y2=a(x1-x2)(x1+x2). 再由x1≠x2,得eabff37ce0b99d4869dd7dd85e59cb80.png 设线段AB的中点为M(x0,y0),则296744606d72d4598ec3c2b36d389626.png 由M点在直线x+y=0上,得c41db128dce3a9e6e1e5a4e76d9cad08.png ∴直线AB的方程为4480047ce8f729878d3a6b9bbd2ce1ec.png 联立直线AB与抛物线的方程并消去y,得 43702338ea310536910fc7316b476177.png 依题意,上面的方程有两个相异实根, b1a1553585cbc9a728a4d9dc41c0ed6c.png ∴a的取值范围是f3e80a66de8955d8640d3c61e456b04b.png 【基础达标】 1.(2014•潍坊模拟)过抛物线y2=4x的焦点且斜率为670bbb82ca39c4ec01b19c146d038b30.png的直线l与抛物线y2=4x交于A,B两点,则|AB|的值为(  ) 4a6948d2e89624feddac69533ffda07a.png

9ef1d626ce909179f2f2444435c28f60.pnge177df810eb98a56ffc3c719ebefd6cc.png

eea1a8780bbe3164383fab1fad0be987.png 【答案】A 【解析】 设A(x1,y1),B(x2,y2),抛物线的焦点为(1,0),则直线l的方程为c5654fb3b797a3b155f3ce9bc2c10f33.png,代入抛物线方程得3x2-10x+3=0. 73336e122e98a1eaf45672a93edae3df.png根据抛物线的定义,可知|AB|=x1+1+x2+1=fe99ac279d704f44f1d8114f38685a49.png 2.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交A、B两点,F为C的焦点.若|FA|=2|FB|,则k=(  ) d84e1596a6e6eb03dc85f451e9d9b71d.png  

d963ecb1edde1c9a3d0a0742170cc675.png 713172aad5fc4a405337056e313cdbc4.png   

0f7db8006f731b87cfb5e7d9fd4f66c7.png 【答案】D 【解析】 由直线方程知直线过定点即抛物线焦点(2,0),由|FA|=2|FB|知xA+2=2(xB+2) 联立方程用根与系数关系可求618614cf58fcfef685eea7e3cf448c08.png 3.抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有(  ) A.x3=x1+x2 B.x1x2=x1x3+x2x3 C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0 【答案】B 【解析】 解方程组25a507c052510f80e6d95563221618f9.png,得ax2-kx-b=0,可知e3a88b19970e9eae769606bd2d0ae7a7.png,代入验证即可. 4已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为_______. 【答案】 y2=4x 【解析】 设抛物线为y2=kx,与y=x联立方程组,消去y, 得:x2-kx=0, x1+x2=k=2×2,故y2=4x. 【能力提升】 1.设抛物线x2=12y的焦点为F,经过点P(2,1)的直线l与抛物线相交于A,B两点,若点P恰为AB的中点,则|AF|+|BF|=(  ) A.12   

B.10 C.6    

D.8 【答案】D 【解析】 设点A(x1,y1),B(x2,y2),则有y1+y2=2×1=2,|AF|+|BF|=(y1+3)+(y2+3)=(y1+y2)+6=8.故选D. 2.已知双曲线ac0df52be6746a7ef05bd379377552e4.png(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为3,则p=(  ) A.1  

75f3ac8b9f687c586b1599a4f5e536f0.png C.2  

D.3 【答案】C 【解析】 由双曲线的离心率4e5054401cb11fe9afa05553766647e9.pngccf784ada9df076d9d4ba8185c0b17d5.png.∴双曲线的渐近线方程为3e74767fa2775ee35e833bd5d5524862.png.由题意可设dbc7078915f1b1de9dc528150a8dfeeb.png225a31229b1881b8d0071c3d345cd3bb.png得p=2或-2(舍去).故选C. 3.直线y=x-3与抛物线y2=4x交于A,B两点,过A,B两点向抛物线的准线作垂线,垂足分别为P,Q,则梯形APQB的面积为(  ) A.48  

B.56 C.64 

D.72 【答案】A 【解析】 由题不妨设A在第一象限,联立y=x-3和y2=4x可得A(9,6),B(1,-2),而准线方程是x=-1,所以|AP|=10,|QB|=2,|PQ|=8, 故S梯形APQB03de3ed78a3a17041425f35e52b70f04.png(|AP|+|QB|)•|PQ|=48. 4.过点(2,4)作直线与抛物线y2=8x有且只有一个公共点,则这样的直线有条_______. 【答案】 2【解析】 注意到点(2,4)是抛物线上的点,用数形结合知满足题意的直线有两条,其一是过该点的切线;其二是过该点且与对称轴平行的直线.故填2.5.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点.若FQ=2,则直线l的斜率等于_______. 【答案】±1 【解析】 设A(x1,y1),B(x2,y2),直线l的方程为y=k(x+1),联立151273b6c12875dfcfc30c5b72422ec0.png得k2x2+(2k2-4)x+k2=0,x1+x2e9287d7c2746c8ecd03f80f24c912373.pngy1+y2=k(x1+x2)+2k=a4b84a085a6f131ad8dd0200af7a9585.png,设Q(x0,y0),则0adf821e3d0cc30c81efa2c247addaf1.png,又F(1,0),5cd59efa84ce4653e6caa05da8d96f02.png,解得k=±1 【终极突破】 1.(2015福建文19)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3. (1)求抛物线E的方程; (2)已知点G(-1,0) ,延长AF交抛物线E于点B, 求证:以点F为圆心且与直线GA相切的圆,必与直GB相切. 46a5836d619c4c2cbd869267b1ce2e5a.png【答案】 (1)y2=4x; (2)见解析 【解析】 (1)由抛物线的定义得f53cdb5562f5f840b807b75f7e6dcfb2.png.因为|AF|=3,即bead92c628206b946f746c6a34bff402.png,解得p=2, 所以抛物线E的方程为y2=4x. (2)解法一:因为点A(2,m),在抛物线E:y2=4x上, 所以c4cc404dd05059fad7b065e8945226e8.png,由抛物线的对称性,不妨设b5a9d251e796ec21b184b1170c617814.png 由c8def52952d730e556fcb16bea2fe553.png,F(1,0)可得直线AF的方程为024ea9d2b7d4e78f7ec6493ab5b68526.png d0401d5f77de2d7e613305fda97cf13a.png,得2x2-5x+2=0. 解得x=2或dda265ff32d3c512ecc5267cba8115b7.png,从而41274ebc0775cbf62f5fddeae2597dda.png 又G(-1,0),所以8e2cc5ceb19672fe22a666d50d857884.png 所以kGA+KGB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等, 故以F为圆心且与直线GA相切的圆必与直线GB相切. 解法二:设以点F为圆心且与直线GA相切的圆的半径为r. 因为点A(2,m)在抛物线E:y2=4x上, 所以c4cc404dd05059fad7b065e8945226e8.png,由抛物线的对称性,不妨设b5a9d251e796ec21b184b1170c617814.png 由c8def52952d730e556fcb16bea2fe553.png,F(1,0)可得直线AF的方程为024ea9d2b7d4e78f7ec6493ab5b68526.png d0401d5f77de2d7e613305fda97cf13a.png,得2x2-5x+2=0. 解得x=2或dda265ff32d3c512ecc5267cba8115b7.png,从而41274ebc0775cbf62f5fddeae2597dda.png 又G(-1,0),故直线GA的方程为cd77442176405bab6a2d9291ad8aa8c9.png 从而8b9d5177fbb89781e5623fc59b3c7290.png 又直线GB的方程为5cb16335389adb8f6075c4248e33265a.png 所以点F到直线GB的距离122b8580275c62c084a29ea3364eb990.png 这表明以点F为圆心且与直线GA相切的圆必与直线GB相切. 2.设不同的两点A(x1,y1),B(x2,y2)在抛物线y=2x2上,l是AB的垂直平分线. (1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论; (2)当直线l的斜率为2时,求l在y轴上的截距的取值范围. 【答案】 (1) x1+x2=0 ; (2) e7e5048b95b1c871fdd88ae60ca06cd4.png 【解析】 (1)F∈l⇔|FA|=|FB|⇔A,B两点到抛物线的准线的距离相等,∵抛物线的准线是x轴的平行线,y1≥0,y2≥0,依题意y1,y2不同时为0,∴上述条件等价于de5f5f6a8da06b627c75bd3daa35c227.png ∵x1≠x2,∴上述条件等价于x1+x2=0,即当且仅当x1+x2=0时,l经过抛物线的焦点F. (2)设l在y轴上的截距为b,依题意得l的方程为 d4e13e6a4d9d17cf587598d915f32eab.png 由y=2x2,得6e639d50304401a77d922fccdf4fea1e.png 2b6e98b1214c4007a724a9254509f3cd.png过A,B的直线方程为9bfdf10f446f56e9e4f6aeb141c564a5.png∵直线AB与抛物线有两个不同交点,∴联立15c33cf9c7f19e3898c6234dd960b2f3.png得32x2+8x+5-16b=0,Δ=-9+32b>0,15a72d159dd4a241b2f4ab1b756e04b6.png.因此直线l在y轴上截距的取值范围是13b3fa9e46fd53a794be810e7b4d2537.png 3.如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0). 6c632069dce87cd806844ff230f71279.png(1)若动点M满足ee68605cbefd99369ac09f6bf7cd33ab.png,求点M的轨迹C; (2)若过点B的直线l′(斜率不等于零)与(1)中的轨迹C交于不同的两点E,F(E在B,F之间),试求△OBE与△OBF面积之比的取值范围. 【答案】 (1) 以原点为中心,焦点在x轴上,长轴长为975b36975c14212b79856bd3ff9b6a25.png,短轴长为2的椭圆; (2) a5bbfa2afcee5a5ee23148970a2ec4f0.png 【解析】 (1)由x2=4y,得cf433475198db37354d07c14c1bcaa17.png c44d14cd1d61b9ff200674bb007d5f48.png ∴直线l的斜率为y′|x=2=1, 故直线l的方程为y=x-1, ∴点A坐标为(1,0). 设M(x,y),则b2dfb9a7b837cd7b5785533e3d19e9ac.png 由363431b90381729276fcbe49f5d7b325.pnge88e45e9a6bbab374b9c205d6b096cf4.png整理得8a6b4801759477b81aa14477f084a165.png ∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为975b36975c14212b79856bd3ff9b6a25.png,短轴长为2的椭圆. (2)由题意知直线l′的斜率存在且不为零, 设l′的方程为y=k(x-2)(k≠0),① 将①代入45cd5c8f986baa973e57b81570826a6b.png 整理,得(2k2+1)x2-8k2•x+(8k2-2)=0, 由Δ>0得b098a2c324f2818142121e56d7d6470f.png 设E(x1,y1),F(x2,y2), 3d99dfdd788997e00b774efa9276d6e5.png c372da192f2e9735477f2595302a571b.png 78fb6bc03ebdea607260dc7feb53c896.png 由此可得7e74e51f09f77f6f2f74fe09831822cc.png,且0<λ<1. 由②知e7e0fbbbc41c40cf5e91c4580e1eba7f.png (x1-2)•(x2-2)=x1x2-2(x1+x2)+4 926d6cfcf686b96329122189675b02b3.png 89fdf3c732759407a7df2203289b2bf2.png 4bcf0a9d16e4267b2a3ea5f0d7d3f125.png d410ec96f147bbc5c051141d57f72d26.png cc24ba56677351078bf6faa4e92be8a1.png ba9eec17a2589a728b7e1e280ed52e68.png 又∵0<λ<1,6a0f0f3d581dce787aec5ceb2ac261b6.png ∴△OBE与△OBF面积之比的取值范围是a5bbfa2afcee5a5ee23148970a2ec4f0.png

725def43a6c2e2dd3ffbf4902c289ab2.png

0da5382d713f46d6e64c5bc3a7d6400b.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值