python数据分析与实战学习笔记一:连续属性离散化

本文介绍了Python中连续数据离散化的三种主要方法:等宽法、等频法和聚类法,详细阐述了每种方法的原理,并以K-means聚类为例,探讨了实际操作中可能遇到的问题,如数据结构转换、排序和移动窗口函数的使用技巧。
摘要由CSDN通过智能技术生成

今天学习了将连续数据离散化的方法,主要有三个:等宽法、等频法、聚类法
等宽法是将数据的值域等分,每个部分拥有相同的宽度,然后为每个部分打上不同的符号或数值进行离散化;
等频法则是要求每个部分的记录数相同;
聚类法则是使用聚类算法比如k-means算法进行聚类获得簇,然后将合并到同一个簇做同一个标记。
三种离散化方法都需要用户指定产生的区间数

书中用K-mean进行数据离散化的代码在python3环境运行时出现了一些错误:

from sklearn.cluster import KMeans #引入KMeans
kmodel = KMeans(n_clusters = k, n_jobs = 4) #建立模型,n_jobs是并行数,一般等于CPU数较好
kmodel.fit(data.reshape((len(data), 1))) #训练模型
c = pd.DataFrame(kmodel.cluster_centers_).sor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值