PANDAS 数据合并与重塑(concat篇)

原文链接:https://blog.csdn.net/stevenkwong/article/details/52528616

pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】中对pandas的方方面面都有了一个权威简明的入门级的介绍,但在实际使用过程中,我发现书中的内容还只是冰山一角。谈到pandas数据的行更新、表合并等操作,一般用到的方法有concat、join、merge。但这三种方法对于很多新手来说,都不太好分清使用的场合与用途。今天就pandas官网中关于数据合并和重述的章节做个使用方法的总结。

  • 文中代码块主要有pandas官网教程提供。

1 concat

concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合

 
 
  • 1
  • 2
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
       keys=None, levels=None, names=None, verify_integrity=False)
 
 
  • 1
  • 2

参数说明 
objs: series,dataframe或者是panel构成的序列lsit 
axis: 需要合并链接的轴,0是行,1是列 
join:连接的方式 inner,或者outer

其他一些参数不常用,用的时候再补上说明。

1.1 相同字段的表首尾相接

这里写图片描述

# 现将表构成list,然后在作为concat的输入
In [4]: frames = [df1, df2, df3]

In [5]: result = pd.concat(frames)
 
 
  • 1
  • 2
  • 3
  • 4

要在相接的时候在加上一个层次的key来识别数据源自于哪张表,可以增加key参数

In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])
 
 
  • 1

效果如下

这里写图片描述

1.2 横向表拼接(行对齐)

1.2.1 axis

当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并

In [9]: result = pd.concat([df1, df4], axis=1)
 
 
  • 1

这里写图片描述

1.2.2 join

加上join参数的属性,如果为’inner’得到的是两表的交集,如果是outer,得到的是两表的并集。

In [10]: result = pd.concat([df1, df4], axis=1, join='inner')
 
 
  • 1

这里写图片描述

1.2.3 join_axes

如果有join_axes的参数传入,可以指定根据那个轴来对齐数据 
例如根据df1表对齐数据,就会保留指定的df1表的轴,然后将df4的表与之拼接

In [11]: result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])
 
 
  • 1

这里写图片描述

1.3 append

append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)

 
 
  • 1
  • 2
In [12]: result = df1.append(df2)
 
 
  • 1

这里写图片描述

1.4 无视index的concat

如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。 
这里写图片描述

1.5 合并的同时增加区分数据组的键

前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源

1.5.1 可以直接用key参数实现

In [27]: result = pd.concat(frames, keys=['x', 'y', 'z'])
 
 
  • 1

这里写图片描述

1.5.2 传入字典来增加分组键

In [28]: pieces = {'x': df1, 'y': df2, 'z': df3}

In [29]: result = pd.concat(pieces)
 
 
  • 1
  • 2
  • 3

这里写图片描述

1.6 在dataframe中加入新的行

append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。 
这里写图片描述

In [34]: s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])

In [35]: result = df1.append(s2, ignore_index=True)
 
 
  • 1
  • 2
  • 3

表格列字段不同的表合并

如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。

 
 
  • 1
  • 2

这里写图片描述

In [36]: dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4},
   ....:          {'A': 5, 'B': 6, 'C': 7, 'Y': 8}]
   ....: 

In [37]: result = df1.append(dicts, ignore_index=True)
 
 
  • 1
  • 2
  • 3
  • 4
  • 5


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值