文献阅读笔记——Boosting VLAD with Supervised Dictionary Learning and High-Order Statistics

本文介绍了一种在VLAD中引入高阶统计信息的方法,并进行了有监督的字典学习。首先,作者增加了二阶和三阶统计量来增强特征的判别性;其次,通过梯度下降法对分类器参数和字典进行优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

          本文由西南交通大学从事计算机视觉相关研究的博士生Xiaojiang Peng 发表在计算机视觉顶级会议ECCV  2014上。从标题可以看出,作者做了两件事情:

(1) 将高阶统计信息引入VLAD。对于字典中的每一个单词,VLAD统计样本上的局部描述子(如SIFT)落在该单词上的描述子与单词的残差累积量。近些年比较流行的做法采用intra-normalization,即对各个单词的残差累计量分别做L2归一化,然后再串成一个长的特征描述子。经过适当变形可发现,VLAD为一阶统计量(均值),一般可理解为样本所有描述子关于各个中心的均值与中心的偏移量。为增强VLAD特征的判别性本文增加了二阶统计量和三阶统计量,即对角协方差与偏斜(skewness)。其中偏斜刻画的是数据到样本中心的不对称性。

(2)字典的有监督学习。先通过kmeans聚类得到字典,然后利用带有标签的样本做字典的有监督学习(本质上是字典自适应)。通过构造成本函数,采用梯度下降法求解分类器参数w和字典D。


          本文有些关于实验的细节之处值得注意,如在做VLAD之前先做PCA-whitening。本文提出的高阶统计量应当会带来不少引用。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值