openslide

在医学图像中,通常使用数字扫描仪将病理图像存储到计算机上,即幻灯片的数字版本称为WSI(whole slide image)。因为WSI的分辨率比较大,常规处理方法通常无法完成对其进行处理,所以需要借助openslide库进行处理。

官方文档: https://openslide.org/api/python/#module-openslide

1、安装openslide

sudo apt-get install openslide-tools
pip install openslide-python
sudo apt-get install python-openslide
sudo apt-get install python3-openslide

2、常用方法

(1)openslide.open_slide——读取

import openslide
slide = openslide.open_slide(xxx.svs/xxx.tif)

(2)slide.level_dimensions——(width, height)

slide.level_dimensions

得到是不同分辨率下的宽高元组的列表。每张WSI最高级别是0,即最高分辨率。

(3)slide.dimensions——当前级别下的宽和高

w, h = slide.dimensions

(4)slide.level_count——幻灯片的级别数

slide.level_count

0是最高级别(最高分辨率),level_count-1是最低级别。

(5)slide.level_downsamples——下采样因子的列表

# level_downsamples[k] 是第 k 级的下采样因子。
slide.level_downsamples[k]

(6)slide.read_region() ——返回一个RGBA图像,包含指定区域的内容

# (location_tuple,level,size)
image = slide.read_region(coord, self.level, (self.size, self.size))
image = image.convert("RGB")

返回是一个四通道的图像,其中A表示透明度。使用PIL库转换成RGB格式。

(7)slide.get_thumbnail()——得到指定尺寸的RGB图像缩略图

# size(tuple)
thumb = slide.get_thumbnail(size)

使用get_thumbnail方法得到的是Image对象而不是numpy array对象

(8)slide.close() ——关闭

slide.close()
SVS是一种常用的数字病理学图像格式,通常用于存储组织切片图像。WSI表示全扫描图像,它是一种高分辨率的数字病理学图像格式,可以用于详细分析组织结构。 要对SVS格式的WSI图像进行分割,可以使用计算机视觉和图像处理技术。以下是一般的步骤: 1. 加载图像:使用适当的图像处理库或软件加载SVS格式的WSI图像。 2. 预处理:进行预处理操作,如调整图像大小、调整亮度和对比度等,以便更好地适应后续的分割算法。 3. 区域选择:根据具体任务的需求,选择感兴趣的区域进行分割。可以使用手动选择或自动选择算法来确定感兴趣区域。 4. 特征提取:根据分割任务的要求,提取适当的特征。可以使用传统的计算机视觉特征提取方法,如纹理特征、颜色特征等,也可以使用深度学习方法进行端到端的特征学习。 5. 分割算法:根据特征和任务需求,选择合适的分割算法。常见的分割算法包括阈值分割、区域生长、边缘检测、分水岭算法等。 6. 后处理:对分割结果进行后处理操作,如去噪、填充空洞、平滑边界等,以提高分割的准确性和鲁棒性。 请注意,SVS格式的WSI图像通常具有很高的分辨率和复杂的结构,因此图像分割可能需要大量的计算资源和时间。此外,对于特定的分割任务,可能需要针对具体应用场景进行算法的优化和调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值