Channel Attention and Multi-level Features Fusion for Single Image Super-Resolution 文章的解读

因为每周都会有汇报的任务,所以就开个博客记录自己读过的文章。

文章地址:https://arxiv.org/pdf/1810.06935v1.pdf

文章的网络结构:

(i) 图片的上半部分是完整的网络结构,文中提出了一个新颖的递归网络,所有的递归单元都共享参数。

(ii) 低分辨率图像(LR)输入网络,分成两个分支。第一是水平方向,经过一个卷积层,在这里属于“特征提取层”。

(iii) 之后的所有递归块是进一步的特征提取部分。

(iv) 图中网络主线的上采样的前一层的卷积,在文中没有公式表示。

(v) 主线要上采样,LR也需要上采样。(这里这么做的主要原因是,减少计算量)上采样有各种方式,反卷积,pixel shuffle之类的。

(vi) 最后将主线和支线都加和在一起。

 

递归块(Recursive Unit)

Channel Attention

这个部分不是在这片文章第一次提出的,是在Squeeze-and-Excitation Networks这篇文章第一次提出的。

文章的链接在这里:https://arxiv.org/pdf/1709.01507.pdf

这里的部分,我之后抽时间写一下。

R^{0}是通过“注意力机制”选择出来的。就是每个通道前面都会乘上一个介于0和1 之间的实数,这里的注意力是“软注意力”。是区别于之前的平等对待每一个通道,也就是每一个特征图,加上这个之后,就会区别对待每一个通道。

 

Mutil-level Features Fusion 

Mutil-level Features 是每个递归块中的原图,浅层还有深层,就是对应的R^{0},R^{c1}还有R^{c2}

Fusion,就是图中的两条竖线。这里的融合是Dense“密集”操作。也就是串联操作,或者叫“排队”。

文中提到的R^{0}\in \mathbb{R}^{H\times W\times C}R^{c1}\in \mathbb{R}^{H\times W\times 2C}R^{c2}\in \mathbb{R}^{H\times W\times 4C}

R^{c1}=R^{0}\left | \right |H_{1}(R^{0}),这里就是R^{0}H_{1}(R^{0})排在一起,就是通道数变多。

最后一个1\times 1卷积是将通道数压缩,压缩到我们想要的数量。

 

Overall Structure

公式

                                                         U_{n}=F_{n}(...(F_{2}(F_{1}(U_{0})))...)           

                                                  I_{lr}=F_{up1}(U_{n})+F_{up2}(I_{lr})=I_{Rb}+I_{Ib}

        没发现递归块之后的卷积的公式,所以,这里有一小点问题。如果作者看到的话,希望给点解释。

 

实验细节:

使用291张图片,然后再加上旋转,翻转之类的操作来增加训练的数据集。然后将图片转成YCbCr通道,然后再将Y通道的图片提取出来,作为训练的数据集。

 

我会随时补充的。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值