【深度学习】Attention机制理解与总结

本文深入探讨了深度学习中的Attention Mechanism,包括其在RNN与CNN中的应用。Attention机制帮助模型关注输入的重要部分,提升模型的准确性,且不显著增加计算负担。在NLP的Encoder-Decoder框架和图像领域的CNN模型中,Attention机制表现出色,如Spatial和Channel Attention。Squeeze and Excitation Networks是Channel Attention的典型代表,而Spatial Transformer Networks则在物体识别中发挥作用。
摘要由CSDN通过智能技术生成

深度学习中Attention Mechanism详细介绍:原理、分类及应用
目前主流的attention方法都有哪些?

Attention Mechanism可以帮助模型对输入的X每个部分赋予不同的权重,抽取出更加关键及重要的信息,使模型做出更加准确的判断,同时不会对模型的计算和存储带来更大的开销,这也是Attention Mechanism应用如此广泛的原因。
之前在做知识库问答和阅读理解问答的研究中都用到了attention机制,效果确实比较显著(虽然减慢训练速度的效果也比较显著…)。在是谷歌发布论文Attention Is All You Need后,attention更是成为了一种普遍做法。后来发现在图像领域attention也有应用,在CNN上加attention感觉比较神奇,因此做一个小的总结。等读完这篇论文后,再来补充论文里的思想。

RNN with Attention

在nlp领域,attention主要应用在Encoder + Decoder框架的基础上。
attention最早应该出现在2014年bengio的neural machine translation论文上面,在seq2seq问题上引入attention

CNN with Attention

主要

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值