贝叶斯算法原理分析

本文深入探讨了贝叶斯算法在模式分类中的应用,指出其依赖大量样本和独立主题词假设的局限性。通过介绍贝叶斯法则、先验概率和后验概率,展示了如何计算后验概率并找到极大后验假设。以医疗诊断问题为例,解释了贝叶斯推理的过程,并强调了先验概率对结果的影响。
摘要由CSDN通过智能技术生成

Bayes法是一种在已知先验概率与条件概率的情况下的模式分类方法,待分样本的分类结果取决于各类域中样本的全体。

Bayes
方法的薄弱环节在于实际情况下,类别总体的概率分布和各类样本的概率分布函数(或密度函数)常常是不知道的。为了获得它们,就要求样本 足够大。另外,Bayes法要求表达文本的主题词相互独立,这样的条件在实际文本中一般很难满足,因此该方法往往在效果上难以达到理论上的最大值。

 

1.贝叶斯法则
机器学

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值