PyTorch 神经网络基础 | 查看 |
Torch和Numpy | 查看 |
变量Variable | 查看 |
激励函数Activation | 查看 |
建造第一个神经网络 | 查看 |
回归 | 查看 |
分类 | 查看 |
快速搭建神经网络 | 查看 |
保存提取 | 查看 |
批训练 | 查看 |
Optimizer 优化器 | 查看 |
高级神经网络结构 | 查看 |
CNN 卷积神经网络 | 查看 |
RNN 循环神经网络 (分类) | 查看 |
RNN 循环神经网络 (回归) | 查看 |
AutoEncoder | 查看 |
DQN 强化学习 | 查看 |
GAN (Generative Adversarial Nets 生成对抗网络) | 查看 |
高阶内容 | 查看 |
为什么 Torch 是动态的 | 查看 |
GPU 加速运算 | 查看 |
Dropout 缓解过拟合 | 查看 |
Batch Normalization 批标准化 | 查看 |