【机器学习项目】使用 PyTorch 预测汽车价格(详细报告)
一、实验背景
随着机器学习和人工智能的迅速发展,预测模型在各个领域的应用变得越来越广泛。其中,预测汽车价格是一个重要且实用的应用领域。准确地预测汽车价格对于汽车制造商、经销商和消费者来说都具有重要意义。
传统的汽车定价模型通常基于经验公式和统计方法,而现代的机器学习方法则提供了更强大的工具来进行汽车价格预测。PyTorch是一个流行的开源深度学习框架,它提供了丰富的工具和功能,可以用于构建和训练各种类型的神经网络模型。
本实验旨在使用PyTorch构建一个预测汽车价格的模型。通过训练一个深度神经网络模型,我们可以利用汽车的各种特征(如品牌、型号、年份、里程数等)来预测汽车的价格。这将为汽车制造商和消费者提供一个有价值的工具,帮助他们做出更准确的定价和购买决策。
二、模型介绍
PyTorch是一个开源的Python机器学习框架,由Facebook的人工智能研究团队开发和维护。它提供了丰富的工具和库,用于构建深度学习模型并进行高效的训练。
下面是PyTorch的一些重要特点和概念:
- 动态计算图:PyTorch使用动态计算图,这意味着计算图是在运行时动态生成的。这使得PyTorch更加灵活,可以通过简单的Python控制流语句进行模型定义和操作。与静态计算图相比(如TensorFlow),动态计算图使得调试和模型迭代更加直观和容易。
- 张量操作:PyTorch提供了一套丰富的张量操作函数,类似于NumPy数组操作。张量是PyTorch的核心数据结构,类似于多维数组,可以存储和处理数字数据。通过PyTorch的张量操作,可以执行各种数学运算、索引和切片操作,以及与其他张量之间的运算。
- 自动求导:PyTorch的自动求导机制是其重要的特性之一。通过设置
requires_grad
属性,可以跟踪张量上的操作,并自动计算梯度。这使得在训练神经网络时,可以方便地计算损失函数相对于模型参数的梯度,从而进行反向传播和优化。 - 神经网络模块:PyTorch提供了一个模块化和可扩展的接口,用于构建神经网络模型。可以通过继承
torch.nn.Module
类来定义自己的模型,并在其中定义前向传播函数。这个接口简化了模型的定义和组织,并提供了许多内置的层和函数,如卷积层、全连接层、激活函数等。 - 数据加载和预处理:PyTorch提供了一系列用于加载和处理数据的工具。
torchvision
库提供了常用的计算机视觉数据集的加载和预处理函数,而torchtext
库则专注于自然语言处理任务的数据处理。此外,PyTorch还提供了DataLoader
类,用于批量加载和迭代数据,方便进行训练和验证。 - 分布式训练支持:PyTorch支持分布式训练,允许在多个GPU或多台机器上进行模型的并行训练。它提供了用于多进程和多线程训练的工具,并通过
torch.nn.DataParallel
和torch.nn.DistributedDataParallel
模块简化了模型的并行化。 - 丰富的生态系统:PyTorch拥有庞大而活跃的社区,提供了各种扩展和库,用于模型压缩、模型解释性、迁移学习等领域。此外,PyTorch还与其他流行的Python库(如NumPy和SciPy)以及深度学习框架(如TensorFlow)之间有良好的互操作性。
PyTorch是一个灵活而强大的深度学习框架,它结合了动态计算图、自动求导和丰富的工具集,使得构建和训练深度学习模型变得简单而高效。
三、数据集介绍
本实验采用一个二手汽车的数据集,这个数据集包含了二手汽车的信息。该实验数据集可点击该百度网盘链接获取:数据集链接。该数据集有 258 行和 9 列,每一行代表一辆汽车,每一列代表不同的属性。以下是每列的属性说明:
• Car_Name: 汽车的名称或型号
• Year: 汽车的制造年份
• Selling_Price: 汽车的销售价格(单位:万卢比)
• Present_Price: 汽车的当前价格(新车价格,单位:万卢比)
• Kms_Driven: 汽车已行驶的公里数
• Fuel_Type: 汽车的燃料类型(如汽油、柴油、CNG等)
• Seller_Type: 卖家类型(个人或经销商)
• Transmission: 汽车的变速器类型(手动或自动)
• Owner: 汽车的所有者数量
其中"Selling_Price"是目标变量。通过对这些特征进行分析,可以了解二手汽车市场的趋势、不同特征与销售价格之间的关系以及其他相关信息。
四、使用 PyTorch 预测汽车价格
1. 导入库
import torch
import jovian
import torch.nn as nn
import pandas as pd
import matplotlib.pyplot as plt
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset, random_split
🤖 代码解释:
这段代码导入了一些常用的Python库和模块,并且提供了一些数据处理和机器学习的功能。下面是对每行代码的详细解释:
import torch
: 导入PyTorch库,PyTorch是一个用于机器学习的开源深度学习框架。import jovian
: 导入Jovian库,Jovian是一个用于记录和分享机器学习实验的库。import torch.nn as nn
: 导入PyTorch中的nn
模块,该模块提供了构建神经网络的类和函数。import pandas as pd
: 导入Pandas库,Pandas是一个用于数据分析和处理的库。import matplotlib.pyplot as plt
: 导入Matplotlib库,Matplotlib是一个用于绘制图表和可视化数据的库。import torch.nn.functional as F
: 导入PyTorch中的functional
模块,该模块提供了一些常用的函数,如激活函数。from torch.utils.data import DataLoader, TensorDataset, random_split
: 从PyTorch的utils.data
模块中导入DataLoader
、TensorDataset
和random_split
类。DataLoader
用于加载数据集,TensorDataset
用于创建包含输入和目标张量的数据集,random_split
用于将数据集随机划分为训练集和验证集。
2. 读取数据集
现在,让我们读取数据:
dataframe_raw = pd.read_csv( "car_data.csv")
dataframe_raw.head()
👾 运行结果如下:
🤖 代码解释:
pd.read_csv("car_data.csv")
使用 Pandas 库的read_csv()
函数读取名为 “car_data.csv” 的CSV文件,并将文件中的数据解析为一个 DataFrame 对象。DataFrame 是 Pandas 中用于存储和操作表格数据的数据结构。dataframe_raw.head()
显示 DataFrame 对象dataframe_raw
的前几行数据,默认显示前5行。这个方法可以帮助你快速查看数据的结构和内容。
这段代码读取名为 “car_data.csv” 的CSV文件,并将其内容存储在 dataframe_raw
变量中,然后显示数据的前几行。
3. 数据处理
your_name = "ChengxuWan" # at least 5 characters
def customize_dataset(dataframe_raw, rand_str):
dataframe = dataframe_raw.copy(deep=True)
# drop some rows
dataframe = dataframe.sample(int(0.95*len(dataframe)), random_state=int(ord(rand_str[0])))
# scale input
dataframe.Year = dataframe.Year * ord(rand_str[1])/100.
# scale target
dataframe.Selling_Price = dataframe.Selling_Price * ord(rand_str[2])/100.
# drop column
if ord(rand_str[3]) % 2 == 1:
dataframe = dataframe.drop(['Car_Name'], axis=1