N * N的方格,从左上到右下画一条线。一个机器人从左上走到右下,只能向右或向下走。并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果。
Input
输入一个数N(2 <= N <= 10^9)。
Output
输出走法的数量 Mod 10007。
Input示例
4
Output示例
10
思路:
卡特兰数。计算时用到lucas定理。
用invf[i]=invf[i+1]*(i+1)%p这个公式反递推得到1!~n!的逆元。
#include <cstdio>
#include <cstdlib>
#include <algorithm>
using namespace std;
const int MOD = 10007;
int fac[MOD + 5];
int inv[MOD + 5];
int QPow(int x, int n)
{
int ret = 1;
int tmp = x % MOD;
while (n)
{
if (n & 1)
{
ret = (ret * tmp) % MOD;
}
tmp = tmp * tmp % MOD;
n >>= 1;
}
return ret;
}
void init()
{
fac[0] = 1;
for (int i = 1; i < MOD; i++)
{
fac[i] = fac[i - 1] * i % MOD;
}
inv[MOD - 1] = QPow(fac[MOD - 1], MOD - 2);
for (int i = MOD - 2; i >= 0; i--)
{
inv[i] = inv[i + 1] * (i + 1) % MOD;
}
}
inline int C(int n, int m)
{
if (n < m)
{
return 0;
}
return fac[n] * inv[m] % MOD * inv[n - m] % MOD;
}
int lucas(int n, int m)
{
return m == 0 ? 1 : C(n % MOD, m % MOD) * lucas(n / MOD, m / MOD) % MOD;
}
int main()
{
init();
int n;
scanf("%d", &n);
n--;
printf("%d\n", (lucas(n << 1, n) + MOD - lucas(n << 1, n - 1)) % MOD * 2 % MOD);
return 0;
}