51nod - 1120 机器人走方格 V3

N * N的方格,从左上到右下画一条线。一个机器人从左上走到右下,只能向右或向下走。并要求只能在这条线的上面或下面走,不能穿越这条线,有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10007的结果。

Input

输入一个数N(2 <= N <= 10^9)。

Output

输出走法的数量 Mod 10007。

Input示例

4

Output示例

10

思路:

卡特兰数。计算时用到lucas定理。 

用invf[i]=invf[i+1]*(i+1)%p这个公式反递推得到1!~n!的逆元。

#include <cstdio>
#include <cstdlib>
#include <algorithm>

using namespace std;

const int MOD = 10007;

int fac[MOD + 5];
int inv[MOD + 5];

int QPow(int x, int n)
{
    int ret = 1;
    int tmp = x % MOD;

    while (n)
    {
        if (n & 1)
        {
            ret = (ret * tmp) % MOD;
        }
        tmp = tmp * tmp % MOD;
        n >>= 1;
    }

    return ret;
}

void init()
{
    fac[0] = 1;
    for (int i = 1; i < MOD; i++)
    {
        fac[i] = fac[i - 1] * i % MOD;
    }
    inv[MOD - 1] = QPow(fac[MOD - 1], MOD - 2);
    for (int i = MOD - 2; i >= 0; i--)
    {
        inv[i] = inv[i + 1] * (i + 1) % MOD;
    }
}

inline int C(int n, int m)
{
    if (n < m)
    {
        return 0;
    }
    return fac[n] * inv[m] % MOD * inv[n - m] % MOD;
}

int lucas(int n, int m)
{
    return m == 0 ? 1 : C(n % MOD, m % MOD) * lucas(n / MOD, m / MOD) % MOD;
}

int main()
{
    init();

    int n;
    scanf("%d", &n);
    n--;
    printf("%d\n", (lucas(n << 1, n) + MOD - lucas(n << 1, n - 1)) % MOD * 2 % MOD);

    return 0;  
}

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值