题目描述:
Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorithm should run in linear time and in O(1) space.
和之前Major Element I很像,但是I中没有要求O(1)的空间,所以无法用HashMap 保存每个element 的status;
看了很多博主的文章才知道怎么做: 用摩尔投票法!
先给出Major Element I的摩尔投票法的解法:
由与一个数组中次数大于1/2的数字只可能有一个,所以就用一个m保存majority element的candidate,用cm保存其出现次数,遍历数组的时候,如果遇到与此candidate不同的数,就在cm中抵消一次,如果相同,就在cm中加上一。这样就相当于把数组中两两不同的数一对一对地消除,最后剩下的就可能是真正的candidate。然后再遍历一遍数组,统计此candidate的次数,如果次数大于threshhold,就返回,否则,则不存在。
与之解法相同,以下是II的解法代码:
import java.util.*;
public class MajorEle {
public List<Integer> majorityElement(int[] nums) {
List <Integer>majorList=new ArrayList<Integer>();
int threshhold=(int)(Math.ceil(nums.length/3));
int m=0,n=0,cn=0,cm=0;
for(int num:nums){
if(n==num)cn++;
else if(m==num)cm++;
else if(cn==0){
n=num;
cn++;
}
else if(cm==0){
m=num;
cm++;
}
else {
cn--;
cm--;
}
}
if(cn!=0){
cn=0;
for(int num:nums){
if(num==n)cn++;
}
if(cn>threshhold)
majorList.add(n);
}
if(cm!=0){
cm=0;
for(int num:nums){
if(num==m)cm++;
}
if(cm>threshhold)
majorList.add(m);
}
return majorList;
}
public static void main(String []args){
MajorEle c=new MajorEle();
int []nums={2,2,1,3};
for(int n:c.majorityElement(nums))
System.out.println(n);
}
}