论文:Sketch-a-Net that Beats Humans(附带CNN的理解)

本文介绍了Sketch-a-Net论文,该研究针对手绘图像识别问题,通过对CNN进行改进,解决了传统神经网络在图像识别上的挑战。论文提出增大卷积核尺寸以适应手绘特征,不使用Local Response Normalization,并采用非标准池化方法。同时,通过考虑绘画顺序和不同细化程度的图像,提高模型表现。
摘要由CSDN通过智能技术生成

这周看了一篇论文,是学校要求的,题目叫做Sketch-a-Net that Beats Humans,由QM的老师发表在BMVC 2015。 这篇论文我看了一下,感觉思路上还是很有趣的,而且解决的问题也比较有价值,但为什么只发在了一个C类会议上,有点诧异。

论文是基于CNN做了一点improvement的。我也是借这个机会稍微了解了一下CNN, 之前看过neutral network,所以看CNN还是没费什么劲的。有关neural network和CNN。这里有几个比较好的连接分享一下

BP神经网络:
http://www.cnblogs.com/xbf9xbf/p/4712785.html

卷积神经网络(CNN):
http://www.cnblogs.com/ronny/p/ann_03.html
http://www.36dsj.com/archives/24006
http://www.aichengxu.com/view/2552005
http://blog.csdn.net/celerychen2009/article/details/8973218

按我自

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值