(第十篇题解)
Step 1 分析题目
题目描述
N O I 2130 NOI2130 NOI2130 即将举行。为了增加观赏性, C C F CCF CCF 决定逐一评出每个选手的成绩,并直播即时的获奖分数线。本次竞赛的获奖率为 w % w\% w%,即当前排名前 w % w\% w% 的选手的最低成绩就是即时的分数线。
更具体地,若当前已评出了 p p p 个选手的成绩,则当前计划获奖人数为 max ( 1 , ⌊ p × w % ⌋ ) \max(1, \lfloor p \times w \%\rfloor) max(1,⌊p×w%⌋),其中 w w w 是获奖百分比, ⌊ x ⌋ \lfloor x \rfloor ⌊x⌋ 表示对 x x x 向下取整, max ( x , y ) \max(x,y) max(x,y) 表示 x x x 和 y y y 中较大的数。如有选手成绩相同,则所有成绩并列的选手都能获奖,因此实际获奖人数可能比计划中多。
作为评测组的技术人员,请你帮 CCF 写一个直播程序。
输入格式
第一行有两个整数
n
,
w
n, w
n,w。分别代表选手总数与获奖率。
第二行有
n
n
n 个整数,依次代表逐一评出的选手成绩。
输出格式
只有一行,包含 n n n 个非负整数,依次代表选手成绩逐一评出后,即时的获奖分数线。相邻两个整数间用一个空格分隔。
样例 #1
样例输入 #1
10 60
200 300 400 500 600 600 0 300 200 100
样例输出 #1
200 300 400 400 400 500 400 400 300 300
样例 #2
样例输入 #2
10 30
100 100 600 100 100 100 100 100 100 100
样例输出 #2
100 100 600 600 600 600 100 100 100 100
提示
样例 1 解释
数据规模与约定
各测试点的 n n n 如下表:
测试点编号 | n = n= n= |
---|---|
1 ∼ 3 1 \sim 3 1∼3 | 10 10 10 |
4 ∼ 6 4 \sim 6 4∼6 | 500 500 500 |
7 ∼ 10 7 \sim 10 7∼10 | 2000 2000 2000 |
11 ∼ 17 11 \sim 17 11∼17 | 1 0 4 10^4 104 |
18 ∼ 20 18 \sim 20 18∼20 | 1 0 5 10^5 105 |
对于所有测试点,每个选手的成绩均为不超过 600 600 600 的非负整数,获奖百分比 w w w 是一个正整数且 1 ≤ w ≤ 99 1 \le w \le 99 1≤w≤99。
提示
在计算计划获奖人数时,如用浮点类型的变量(如 C/C++ 中的 float
、 double
,Pascal 中的 real
、 double
、 extended
等)存储获奖比例
w
%
w\%
w%,则计算
5
×
60
%
5 \times 60\%
5×60% 时的结果可能为
3.000001
3.000001
3.000001,也可能为
2.999999
2.999999
2.999999,向下取整后的结果不确定。因此,建议仅使用整型变量,以计算出准确值。
Step 2 思路简述
家银们先说我上次推荐的洛谷
C
S
P
−
J
CSP-J
CSP−J的题真的不简单…(仅限于本蒟蒻)
有没有 d a l a o dalao dalao看看这个题咋做了 q w q qwq qwq戳一下上面的就行了
废话不多说了,我们开始分析题目
作为一道洛谷黄标题这个题着实有点虚有其名 (因为这题是真简单)
定义变量( d a l a o dalao dalao请自动跳过此部分和知识点部分)
这个变量蛮简单,题目上基本体现,只需多定义一个数组(排序)即可
int cunchu[601];
int n,w;
知识点
这个题第一眼 (我去怎么还有百分号好复杂)
第二眼 (桶排序)
桶排序( B u c k e t S o r t Bucket Sort BucketSort)是一种排序算法,它的基本思想是将待排序的元素分到若干个有序的桶中,再对每个桶中的元素进行排序,最后将各个桶中的元素合并成有序序列(来自 C C C知道)
桶排序的基本步骤如下:
1.创建若干个空桶。
2.将待排序元素逐个分配到对应的桶中。
3.对每个非空桶中的元素进行排序(可以使用其他排序算法,如插入排序、快速排序等)。
4.按照桶的顺序,依次将各个非空桶中的元素合并成有序序列。
所以大家应该理解了上面我为什么要设置数组了吧[doge]
接下来请看思路
主体思路
水题 思路也很简单,先开个大小为600多的桶,然后在读入第
i
i
i个人的
成绩的时候边将其分数放到相应的桶中
再按 从大到小直接遍历一遍,统计分数 ⩾ k ⩾ k ⩾k 的人的个数,直到这个数
⩾ m a x ⩾max ⩾max(1,[i×w%])为止,输出 k k k。
整体就是这么一个思路,直接看代码吧
Step 3
完整AC代码
#include<bits/stdc++.h>
using namespace std;
int tong[605];
int n,w;
int main()
{
int x;
cin>>n>>w;
for(int i=1;i<=n;i++)
{
cin>>x;
tong[x]++;
int sum=0;
for(int j=600;j>=0;j--)
{
sum+=tong[j];
if(sum>=max(1,i*w/100))
{
cout<<j<<' ';
break;
}
}
}
return 0;
}
题解结束,感谢观看~