【RSCM】《RSCM:Region selection and concurrency model for multi-class weather recognition》

在这里插入图片描述

IEEE Transactions on Image Processing(TIP), 2017

paper_list_weather_classification



1 Background and Motivation

天气是我们生活中不可或缺的一部分,即时和密集地收集天气信息是一个具有巨大社会影响的科学主题。

图像包含很多信息以了解天气,在进行天气分析时候,图像具有数量大和生成成本低等特殊优势

基于图像的天气识别有许多应用

  • 包括太阳能系统在内的智能电网可以根据天气识别结果分配电力
  • 驾驶助手根据天气情况做出即时响应
  • ourtdoor robot

与其他计算机视觉的识别任务不太相同, weather recognition needs to understand complex phenomena of lighting and reflection on object surface and of the scene

基于图像处理的天气识别场景识别不能完全等价,因为天气识别需要分析各种气象条件下场景的变化(Regional Cue 如 Fig.1,同样是草,在不同的天气环境下草也不太一样),而不是场景结构本身

在这里插入图片描述

本文,作者提出了利用 coexistence clue 来进行天气识别, 例如,蓝天和大街上的投影一起出现,就很有可能是 sunny day 了(天空和街道的并发线索),又如 Fig.2,街道部分被照亮,部分有建筑的阴影,就很有可能是 sunny day 了(街道和建筑的并发线索)

在这里插入图片描述

Fig.2 可以看出,region pairs with high visual concurrency do not necessarily hold stable spatial/structural relationship,因此如何锁定合适的区域,如何发掘更多的 coexistence clue 成为关键!

因此,作者设计了region selection and concurrency model (RSCM) 来解决上诉的关键问题

2 Advantages / Contributions

  • 贡献了自己的多标签,单标签数据集,效果很好,在公共数据集上表现也不错(感觉数据集并没有那么好)
  • 提出的数据集 help discover regional properties and concurrency

3 Related work

  • driving assistance
  • adding weather priors
  • estimate illumination from outdoor images

4 Method

在这里插入图片描述
先粗略的分割找有鉴别性的区域

然后,区域组合来进行天气识别

4.1 Pre-process: Coarse Segmentation

co-segmentation,从一组图片中提取相似的公共部分,which works in an unsupervised manner to segment an image into different regions.

Fig.8(b) 是初略分割的结果,可以看出,比较粗超,不足以区分出 semantic classes,

在这里插入图片描述

为了尽量避免 mistake,作者先用 K-means 对图像进行聚类(根据 HoG 和 GIST 特征),聚类结果如 Fig.7 所示,
在这里插入图片描述
然后再对聚在一起的一类图片进行 co-segmentation,结果如 Fig.9 所示

在这里插入图片描述

4.2 Regional Feature Extraction

采用的是论文 《Instance-aware semantic segmentation via Multi-task Network Cascades》(CVPR-2016) 中的方法,本文中简称 CFM 方法

整体效果如 Fig.10 所示,对 cluster 的 region 进行 RoI pooling,然后 mask

在这里插入图片描述

提取到的区域特征公式 f f f 表示如下

f = G ( Θ ; I , R ) f = G(\Theta; I,R) f=G(Θ;I,R)

其中, G ( Θ ; : ) G(\Theta;:) G(Θ;:) 表示 CNN 网络, I I I 是输入图片, R R R 是 region of image I I I

4.3 Region Selection and Concurrency

在这里插入图片描述
面临两个难题,一个 cluster 可能有许多 region,怎么选?选出来的区域怎么 concurrency 才能更好的进行天气识别?

作者设计 region selection and concurrency model (RSCM) 来解决上面两个问题

4.3.1 Region Selection

R i , j , k R_{i,j,k} Ri,j,k 表示 k t h k^{th} kth image group (k-means聚类后的结果)中 j t h j^{th} jth cluster i t h i^{th} ith region,为了简单的描述,我们去掉 k k k

比如 Fig.11 中,class 1(cluster)中,有两个 region(两片绿色区域)

region R i , j R_{i,j} Ri,j 的特征描述为 f i , j f_{i,j} fi,j j t h j^{th} jth clusterregion 数量为 n j n_j nj,二值 v i , j v_{i,j} vi,j 来描述 region 是否被选中,当 n j = 0 n_j = 0 nj=0 时,我们定义 v 0 , j = 1 v_{0,j} = 1 v0,j=1 f 0 , j = 0 → f_{0,j} = \overrightarrow{0} f0,j=0 ,也即,选中空 region,其特征为 0

被选择出来的特征可以表示为

F j = v j T f j F_j = v_j^Tf_j Fj=vjTfj

其中, v j = [ v 0 , j . . . v n j , j ] v_j = \begin{bmatrix} v_{0,j} \\ ...\\ v_{n_j,j} \end{bmatrix} vj=v0,j...vnj,j v i , j ∈ 0 , 1 , ∣ ∣ v j ∣ ∣ 1 = 1 v_{i,j} \in {0,1}, ||v_j||_1 = 1 vi,j0,1,vj1=1(一个 cluster 中仅一个 region 被选中), f j = [ f 0 , j . . . f n j , j ] f_j = \begin{bmatrix} f_{0,j} \\ ...\\ f_{n_j,j} \end{bmatrix} fj=f0,j...fnj,j

各 vector 的维度如下,

  • v j ∈ R n j + 1 v_j \in \mathbb{R}^{n_j + 1} vjRnj+1(包括了 v 0 , j v_{0,j} v0,j
  • f j ∈ R ( n j + 1 ) × D f_j \in \mathbb{R}^{(n_j + 1) \times D} fjR(nj+1)×D
  • F j ∈ R D F_j \in \mathbb{R}^ D FjRD,cluster j 中选出某个 region 的 D 维特征

实验中 D 被设计为了 4096

区域选择的得分方程(scoring function)表达如下

E s ( W s ; V , F ) = t r a c e ( W s F T ) E_s(W^s;V,F) = trace(W^sF^T) Es(Ws;V,F)=trace(WsFT)

It outputs high score to encourage the selection of discriminative regions.

其中

  • W s = [ W 1 s . . . W M s ] W_s = \begin{bmatrix} W_1^s \\ ...\\ W_M^s \end{bmatrix} Ws=W1s...WMs(权重 ),

  • V = [ v 1 . . . v M ] V = \begin{bmatrix} v_1 \\ ...\\ v_M \end{bmatrix} V=v1...vM(所有 cluster 的所有 region 被选中的情况),

  • F = [ F 1 . . . F M ] F = \begin{bmatrix} F_1 \\ ...\\ F_M \end{bmatrix} F=F1...FM(所有 cluster 的所有 region 的特征)

W s ∈ R M × D W^s \in \mathbb{R}^ {M \times D} WsRM×D F ∈ R M × D F \in \mathbb{R}^ {M \times D} FRM×D M M M 是 cluster 数量

4.3.2 Region Concurrency

在这里插入图片描述
用孪生网络(Siamese architecture),以不同 cluster 的两个 region 作为输入,用 CFM 提取特征

来自 j t h j^{th} jth k t h k^{th} kth cluster 的不同 region 的 Concurrency 计算方式如下:

s j , k = − ∣ ∣ F j − F k ∣ ∣ 2 s_{j,k} = -||F_j-F_k||_2 sj,k=FjFk2

值越大,concurrency 越高

计算出不同 region 的 concurrency 后,乘以一个权重就可以得到得分方程

E c ( W c ; V , F ) = ∑ j = 1 M − 1 ∑ k > j M ( W c ∘ S ) j , k ( 公 式 7 ) E_c(W^c;V,F) = \sum_{j=1}^{M-1}\sum_{k>j}^{M}(W^c \circ S)_{j,k}(公式7) Ec(Wc;V,F)=j=1M1k>jM(WcS)j,k7

A higher score of Eq. (7) means the regions have higher concurrency.

其中

  • W c , S ∈ R M × M W^c,S \in \mathbb{R}^ {M \times M} Wc,SRM×M,对称矩阵, S S S 描述不同 cluster 计算出来的 concurrency,
  • ∘ \circ 是 Hadamard product,也即 element-wise multiply
  • concurrency matrix S S S 是对称的,也即 s j , k = s k , j s_{j,k} = s_{k,j} sj,k=sk,j

4.3.3 Joint Model for Weather Recognition

J ( W s , W c ; V , F ) = E s ( W s ; V , F ) + E c ( W c ; V , F ) ( 公 式 8 ) J(W^s,W^c;V,F) = E_s(W^s;V,F) + E_c(W^c;V,F)(公式8) J(Ws,Wc;V,F)=Es(Ws;V,F)+Ec(Wc;V,F)8

A higher score means that an image has higher confidence to have label y = 1.

训练集 ( F , y ) ∈ T (F,y) \in T (F,y)T F F F 是 regional features, y y y 是 weather label,参数 W c , W s , Θ W^c, W^s, \Theta Wc,Ws,Θ 的 learning phase 如下

1)Inference of V V V

隐变量 V

V ∗ = a r g m a x V J ( W s , W c ; V , F ) ( 公 式 9 ) V^* = \underset{V}{argmax} J(W^s,W^c;V,F)(公式9) V=VargmaxJ(Ws,Wc;V,F)9

穷举所有 region 来寻找 V 显然是不太可取的( C n 2 C_n^2 Cn2 复杂度),作者采用 iterated conditional modes (ICM) 算法,迭代来求解 V ∗ V^* V

在这里插入图片描述

比如,每次迭代中,只改变 v i , j v_{i,j} vi,j,其他 v v v 不变,看 J J J 的变化来,来确定 v i , j v_{i,j} vi,j 的值

Fig.12 展示了一些天气学出来的 region pairs

在这里插入图片描述

在这里插入图片描述

2)Learning of W s W^s Ws and W c W^c Wc

用的 latent SVM,来优化(梯度下降),如公式 10 和 11 所示

在这里插入图片描述
在这里插入图片描述

3)Learning of Θ \Theta Θ

损失函数如公式 12 所示

在这里插入图片描述

用 SGD 来更新

实验中 η \eta η 被设置为了 2


上述的 v v v W s W c W^sW^c WsWc Θ \Theta Θ 交替优化,流程如下所示

在这里插入图片描述

5 Experiments

先用 ICM 算法根据公式 9 计算出隐变量 V ∗ V* V,然后根据公式 8 求解

  • 二分类的时候,J>0,y = 1;J≤0,y = -1
  • 多分类的时候,采用 one-vs-all 策略,当前类 y=1,其他类别 y=-1,有多个 RSCM(类比多分类 SVM),预测的时候取最高的 RSCM 得分(得分要 scale 成概率)
  • attribute recognition 时,也是 one-vs-all 策略,多个 RSCM 都输出结果(高于某个阈值的话)

5.1 Datasets

在这里插入图片描述

  • MWD,multi-class weather dataset,contains 65,000 images from 6 common categories,(训练测试55开,跑10次,给出 mean ± std)
    • Weather Class Annotation,Fig.5(a)
    • Weather Attribute Annotation,Fig.5(b)
  • 《Two-class weather classification》Dataset,10,000 张,sunny and cloudy

在这里插入图片描述

5.2 Experiments on Our Weather Classification Dataset

1)Sensitivities to Region Generation

在这里插入图片描述

探讨 co-segmentation 算法产生的 region 数量对 RSCM 的影响,region 数量越多,速度越慢,M = 15 效果反而变差,可能是形成许多信息量不够的 tiny region

2)Component Analysis

在这里插入图片描述

探讨 selection 和 concurrency 模块的重要性,两个模块都很重要

3)Strategies of Utilizing Regions

在这里插入图片描述

用整个图的效果不如用 region 的好

4)Comparisons with Other Methods

在这里插入图片描述

5.3 Experiments on Our Weather Attribute Dataset

在这里插入图片描述

在这里插入图片描述

5.4 Study on Weather Classification and Attribute Recognition

在这里插入图片描述

用 weather classification 任务训练得到的模型去测试 attribue recognition 任务,确实不太行

Fig.13 展示了用分类模型训练 RSCM 的结果,可以看出分类数据集也包含了 useful information

在这里插入图片描述

用分类和 attribute 数据集一起训练 RSCM 模型,效果最好

在这里插入图片描述

反过来,用 attribute 数据集训练出来的模型去测试分类数据集,acc 能达到 96.4,👍👍👍

5.5 Experiments on Two-class Weather Dataset

在这里插入图片描述

未来展望

region clusters aware of the weather condition during training

6 Conclusion(own)

  • 天气识别场景识别也不能完全等价,因为天气识别需要分析各种气象条件下场景的变化,而不是场景结构本身。
  • weather classification and attribute recognition
  • traditional bag-of-feature strategy considering brightness, contrast, sharpness, saturation and hue in sunny and rainy days
  • co-segmentation
  • ICM
  • 《Instance-aware semantic segmentation via Multi-task Network Cascades》(CVPR-2016),CFM 方法
  • 实验对比还蛮周全的,整图 vs region,classification 测 attribute
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值