【Video FAS】《Research on Face Liveness Detection Based Video》

在这里插入图片描述

[1]隋雅茹.基于视频的人脸活体检测算法研究[D].长春理工大学,2024.DOI:10.26977/d.cnki.gccgc.2024.000063.



1、Background and Motivation

攻击类型
在这里插入图片描述
background

  • 人脸识别技术的广泛应用
  • 人脸识别技术的安全威胁

motivation

  • 提高人脸识别系统的安全性
  • 克服传统算法的局限性
  • 推动人脸识别技术的发展

2、Related Work

  • 基于纹理信息的人脸活体检测方法
    • 传统方法
    • 深度学习的方法
  • 基于生理信息的人脸活体检测方法——rPPG技术
    • 传统方法 (研究者通过选取感兴趣区域(ROI)、去噪等预处理步骤来提取rPPG信号,并提取手工设计的特征(如心率、频谱统计特征等)进行分类。)(缺点:但当受到噪声影响时,rPPG 信号不够稳健。此外,需要采集 10 至 12 秒的人脸视频才能识别出心跳信息,限制了基于生理信息的检测方法在实际生活中的应用。)
    • 深度学习方法

在这里插入图片描述

存在的问题

纹理信息方法:

  • 需要人脸图像具有较高的分辨率,以准确区分真假人脸的微小纹理特征差异。
  • 在面对不同采集环境、特别是在昏暗的环境中,识别伪造人脸的能力会降低。
  • 难以有效地区分真实人脸和3D面具攻击。

生理信息方法:

  • rPPG信号容易受到光照、头部运动以及采集设备运动的影响,降低活体检测的准确性。
  • 即使在真实人脸视频中,也可能存在微弱的生理信号,影响对重播攻击的检测效果。

3、Advantages / Contributions

  • 提出基于纹理特征的人脸活体检测方法 Gram-Net
  • 提出基于生理特征的人脸活体检测方法 STNet + FFT + SVM
  • 提出基于多特征融合的人脸活体检测方法(提出基于注意力机制的融合模块),结合了基于纹理特征的 Gram-Net 和基于生理特征的 ST-Net(采用迁移学习的方法训练双通道网络),通过基于注意力机制的融合模块实现了对纹理特征和生理特征的有效融合。

在 Replay-Attack 和 3DMask 数据库上,基于纹理特征的方法达到了 100% 的准确率。

基于生理特征的方法在 Replay-Attack 数据库上准确率为99.38%,在 3DMask 数据库上为 100%。

基于多特征融合的方法在 Replay-Attack 数据库上准确率为99.79%,在 3DMask 数据库上为 100%。

4、Method

4.1、基于纹理特征的人脸活体检测

人脸检测,作者选用的是 MTCNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值