【FAS Survey】《Deep learning for face anti-spoofing: A Survey》

本文探讨了深度学习在人脸识别系统中检测自动人脸欺骗(FaceSpoofing)特别是物理展示攻击(PhysicalPresentationAttacks,PAs)的方法,包括混合手工与深度学习的策略、传统的二分类监督以及更先进的像素级监督和泛化方法。文章还涵盖了多模态传感器和未来研究方向,如架构优化、解释性和隐私保护。
摘要由CSDN通过智能技术生成

在这里插入图片描述

在这里插入图片描述

PAMI-2022

最新成果:https://github.com/ZitongYu/DeepFAS


1 Introduction & Background

人脸识别系统,automatic face recognition (AFR) system:

在这里插入图片描述

  • parallel fusion,并行
  • serial scheme,串联

人脸活检:

  • face presentation attack detection or face liveness detection

人脸活检方法分类:

  • 传统方法
  • 深度学习

(1)传统方法

Most traditional algorithms are designed based on human liveness cues and handcrafted features

liveness cues 包括但不限于:

  • eye-blinking
  • face and head movement(nodding and smiling)
  • gaze tracking
  • remote physiological signals(rPPG)
  • screen bezel(屏幕边框)
  • irregular/limited geometric depth distribution
  • abnormal reflection(the face surface of print/replay and transparent mask attacks are usually with irregular/limited geometric depth distribution and abnormal reflection, respectively.)
  • moire pattern(摩尔条纹)
  • illumination changes
  • physiological signals

classical handcrafted descriptors designed for extracting effective spoofing patterns from various color spaces(RGB, HSV, and YCbCr)

  • LBP
  • SIFT
  • SURF
  • HOG
  • DoG
  • image quality
  • optical flow motion

(2)深度学习的方法

是本文讨论的重点,作者总结如下
在这里插入图片描述

1.1 Face Spoofing Attacks

攻击类型,automatic face recognition (AFR) system 经常分为这两类

  • digital manipulation(in the digital virtual domain)
  • physical presentation attacks(PAs)

本文重点讨论 PAs——misleads the real-world AFR systems via presenting face upon physical mediums in front of the imaging sensors

PAs 不同切入角度有不同的分类形式
在这里插入图片描述
根据 attackers’ intention

  • impersonation:entails the use of spoof to be recognized as someone else via copying a genuine user’s facial attributes to special mediums such as photo, electronic screen, and 3D mask(拿着别人的假脸攻击)
  • obfuscation:hide or remove the attacker’s own identity using various methods such as glasses, makeup, wig, and disguised face.(在自己脸上作假来攻击)

根据 geometry property

  • 2D attacks——Flat/wrapped printed photos, eye/mouth-cut photos, and digital replay of videos are common 2D attack variants
  • 3D attacks——hard/rigid masks can be made from paper, resin, plaster, or plastic, flexible soft masks are usually composed of silicon or latex
    • low-fidelity 3D mask(低仿 3D)
    • high fidelity mask(高仿 3D)

根据 facial region covering

  • whole attacks
  • partial attacks

1.2 Datasets for Face Anti-Spoofing

Sensor:

  • multispectral SWIR(短波红外,1400 - 2500 nm)
  • NIR(750-1400 nm)
  • RGB
  • depth
  • Thermal
  • four-directional polarized
  • other specialized sensors (e.g., Light field camera)

数据集(prevailing public FAS datasets):data amount, subject numbers, modality / sensor, environmental setup, and attack types.

在这里插入图片描述

samples(图片数) and subjects(IDs)

公开数据发展的趋势:

  • large scale data amount
  • diverse data distribution
  • multiple modalities and specialized sensors

在这里插入图片描述

1.3 Evaluation Metrics

评价指标

  • Rejection Rate (FRR)
  • False Acceptance Rate (FAR)
  • Half Total Error Rate (HTER)
  • Equal Error Rate (EER)
  • Area Under the Curve (AUC)
  • Attack Presentation Classification Error Rate (APCER),
  • Bonafide Presentation Classification Error Rate (BPCER)
  • Average Classification Error Rate (ACER) ,越低越好

1.4 Evaluation Protocols

测试方式(evaluation protocols):

  • intra-dataset intra-type:with slight domain shift
  • cross-dataset intra-type:train on source domains and test on shifted target domain
  • intra-dataset cross-type(leave-one-type-out setting)
  • cross-dataset cross-type(train on datasets A test on datasets B)

在这里插入图片描述
上图评价指标都是越低越好

open-set problem in practice,需要考虑 unseen domain generalization

2 Deep FAS with Commercial RGB Camera

在这里插入图片描述

在这里插入图片描述

2.1 Hybrid (Handcraft + Deep Learning) Method

有如下三种混合形式

在这里插入图片描述
存在的缺点

(1)crafted features highly rely on the expert knowledge and not learnable, which are inefficient once enough training data are available;

(2)there might be feature gaps/incompatibility between handcrafted and deep features, resulting in performance saturation.

2.2 Traditional Deep Learning Method

在这里插入图片描述

  • 二分类的方法 supervision With Binary Cross Entropy Loss
  • pixel-wise auxiliary/generative supervisions

下面展开说说

2.2.1 Direct Supervision With Binary Cross Entropy Loss

在这里插入图片描述

treat FAS as a binary classification problem (e.g., ‘0’ for live while ‘1’ for spoofing faces, or vice versa)

bonafide versus PA

与常见的二分类视觉任务的不同点在于

  • self-evolving problem(attack vs. defense develop iteratively)
  • content-irrelevant (e.g., not related to facial attribute and ID)
  • subtle and with fine-grained details

very challenging to distinguish by even human eyes,性别二分类关注的是 semantic features,活检关注的是 arbitrary and unfaithful clues (e.g., screen bezel) for spoofing patterns,such intrinsic live/spoof clues are usually closely related with some position-aware auxiliary tasks.

存在的缺点:

  • these supervision signals only provide global (spatial/temporal) constraints for live/spoof embedding learning, which may causes FAS models to easily overfit to unfaithful patterns.

  • usually black-box and the characteristic of their learned features are hard to understand

2.2.2 Pixel-Wise Supervision

在这里插入图片描述

(1)Pixel-Wise Supervision With Auxiliary Task

provide more fine-grained and contextual task-related clues for better intrinsic feature learning,而不是 unfaithful patterns (e.g., screen bezel).

auxiliary supervision signals:

  • pseudo depth labels
  • binary mask labels——attack-type-agnostic and spatially interpretable
  • 3D point cloud map
  • Fourier spectra
  • reflection maps
  • ternary map
  • original face input reconstruction
  • pixel-wise reconstruction constraints
  • LBP texture map

存在的缺点:

  • usually relies on the high-quality (e.g., high-resolution) training data for fine grained spoof clue mining, and is harder to provide effective supervision signals when training data are too noisy and with low quality
  • the pseudo auxiliary labels are either human-designed or generated by other off-the-shelf algorithms, which are not always trustworthy

(2)Pixel-Wise Supervision With Generative Model

usually relaxes the expert-designed hard constraints (e.g.,auxiliary tasks), and leaves the decoder to reconstruct more natural spoof-related trace.

The generated spoof patterns are visually insightful, and are challenging to manually describe with human prior knowledge.

缺点

such soft pixel-wise supervision might easily fall into the local optimum and overfit on unexpected interference (e.g., sensor noise),

解决方式之一

Pixel-Wise Supervision With Generative Model + Pixel-Wise Supervision With Auxiliary Task

2.3 Generalized Deep Learning Method

在这里插入图片描述

Traditional end-to-end deep learning 缺点,下面场景会翻车

  • unseen dominant conditions——indicate the spoof irrelated external changes (e.g., lighting and sensor noise) but actually influence the appearance quality
  • unknown attack types——mean the novel attack types with intrinsic physical properties (e.g., material and geometry) which have not occurred in the training phase

Generalized Deep Learning Method

  • domain adaptation
  • generalization techniques
  • zero/few-shot learning
  • anomaly detection

2.3.1 Generalization to Unseen Domain

Domain adaptation(DA) vs Domain Generalization(DG)

在这里插入图片描述
一个需要无标签的 target domain 数据,一个不需要 target domain 的数据

(1)Domain adaptation(DA)

The distribution of source and target features are usually matched in a learned feature space

minimize the distribution discrepancy between the source and the target domain by utilizing unlabeled target data,

缺点

  • it is difficult and expensive to collect a lot of unlabeled target data
  • the source face data are usually inaccessible when deploying FAS models on the target domain

(2)Domain Generalization(DG)

缺点

domain generalization benefits FAS models to perform well in unseen domain, but it is still unknown whether it deteriorates the discrimination capability for spoofing detection under the seen scenarios.

2.3.2 Generalization to Unknown Attack Types

(1)Zero/Few-Shot Learning

缺点

few-shot learning 在 zero-shot case 场景会翻车

the failed detection usually occurs in the challenging attack types (e.g., transparent mask, funny eye, and makeup), which share similar appearance distribution with the bonafide

(2)Anomaly Detection

first trains a reliable one-class classifier to accurately cluster the live samples. Then any samples (e.g., unknown attacks) outside the margin of the live sample cluster would be detected as attacks

缺点

suffer from discrimination degradation compared with conventional live/spoof classification in the real-world open-set scenarios (i.e., both known and unknown attacks).

3 Deep FAS with Advanced Sensors

在这里插入图片描述

3.1 Uni-Modal Deep Learning Upon Specialized Sensor

在这里插入图片描述
绿色框还有个 medium 的评价,P < M < G < VG

NIR (900 to 1800nm), poor imaging quality in long distance

SWIR(940nm and 1450nm)

dynamic flash is sensitive under outdoor environments and is not user-friendly due to the long temporal activation time

3.2 Multi-Modal Deep Learning

(1)Multi-Modal Fusion

  • feature-level fusions
    modality features are usually extracted from separate branches with high computational cost
  • input-level fusions
  • decision-level fusions

(2)Cross-Modal Translation

pseudo modalities could be generated via cross-modality translation

missing modal data for multi-modal FAS

4 Discussion and Future Directions

the limitations of the current development

  • Limited live/spoof representation capacity with sub-optimal deep architectures, supervisions, and learning strategies
  • Evaluation under saturating and unpractical testing benchmarks and protocols
  • Isolating the anti-spoofing task on only the face area and physical attacks
  • Insufficient consideration about the interpretability and privacy issues

4.1 Architecture, Supervision and Interpretability

automatically search and find the best-suited temporal architectures especially for multi-modal usage

rich temporal context vs binary or pixel-wise supervision

More advanced feature visualization manners and fine-grained pixel-wise spoof segmentation should be developed for interpretable FAS

4.2 Representation Learning

transfer learning——缓解过拟合
disentangled learning——disentangle the intrinsic spoofing clues from the noisy representation
metric learning
self-supervised and semi-supervised learning

4.3 Real-World Open-Set FAS

GrandTest

4.4 Generic and Unified PA Detection

在这里插入图片描述

AFR-aware and FAS-aware

digital and physical attack types

4.5 Privacy-Preserved Training

federated learning

Last but no least

高端红外摄像机一般备有双滤光片(IR-CUT),IR-CUT双滤光片由一个红外截止滤光片和一个全光谱光学玻璃构成,当镜头外的红外感应点侦测到光线的强弱变化后,内置的IR-CUT双滤光片能够根据外部光线的强弱随之自动切换,即白天打开红外过滤光片,过滤掉光线中的红外线,让CCD在白天只能感应到可见光,这样就使数码摄像机拍摄到的影像和我们肉眼看到的影像相一致了。晚上关闭红外线滤光片,让补光的红外线通过镜头进入图像,确保摄像机在24小时都具有良好的图像采集效果,目前大多数的红外摄像机都采用LED红外发光二级管作为红外摄像机的主要补光材料

  • 手电筒效应
  • 暗角效应
  • 红外过曝现象

向「假脸」说 No:用OpenCV搭建活体检测器

活体检测的方法有很多,包括:

  • 纹理分析(Texture analysis),该方法计算了面部区域的局部二值模式(Local Binary Patterns,LBP),用 SVM 将面部分为真实面部和伪造面部;

  • 频率分析(Frequency analysis),比如检查面部的傅立叶域;

  • 可变聚焦分析(Variable focusing analysis),例如检查连续两帧间像素值的变化;

  • 启发式算法(Heuristic-Based algorithms),包括眼球运动、嘴唇运动和眨眼检测。这些算法试图追踪眼球运动和眨眼行为,来确保用户不是拿着谁的照片(因为照片不会眨眼也不会动嘴唇);

  • 光流算法(Optical Flow algorithm),即检测 3D 对象和 2D 平面产生的光流的属性和差异;

  • 3D 面部形状(3D face shape),类似于 iPhone 上的面部识别系统,这种算法可以让面部识别系统区分真实面部和其他人的照片或打印出来的图像;


暂时下载不到的文章 for free

  • Unknown presentation attack detection with face rgb images
  • Fake iris detection using structured light
  • FaceRevelio: a face liveness detection system for smartphones with a single front camera
  • Meaningful adversarial stickers for face recognition in physical world
  • Kim W, Suh S, Han J J. Face Liveness Detection From a Single Image via Diffusion Speed Model[J]. Image Processing, IEEE Transactions on, 2015, 24(8): 2456-2465.

阅读笔记,更详细的可以参考 【Paper Reading】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值