53. Maximum Subarray

题目

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

我的想法

第一个想到的方法是sliding window,但后来觉得不太对。改用dp,用一个二维数组来存所有的start-end的结果,忽略了长数据,导致内存超了

class Solution {
    public int maxSubArray(int[] nums) {
        int[][] dp = new int[nums.length][nums.length];
        int len = 0;
        int max = Integer.MIN_VALUE;
        while(len < nums.length) {
            for(int i = 0; i + len < nums.length; i++) {               
                int start = i;
                int end = i + len;
                if(start == end) {
                    dp[start][end] = nums[start];
                } else {
                    dp[start][end] = dp[start][end - 1] + nums[end];
                }
                if(dp[start][end] > max) {
                    max = dp[start][end];
                }
            }
            len++;
        }
        return max;
    }
}

解答

leetcode solution: DP
别人的dp。。。
以i结尾的子串的最大值dp[i]等于A[i]+dp[i-1],只有dp[i-1]>0加上才会使当前值更大,因此如果dp[i-1]<0就不加

class Solution {
    public int maxSubArray(int[] A) {
        int n = A.length;
        int[] dp = new int[n];//dp[i] means the maximum subarray ending with A[i];
        dp[0] = A[0];
        int max = dp[0];
        
        for(int i = 1; i < n; i++){
            dp[i] = A[i] + (dp[i - 1] > 0 ? dp[i - 1] : 0);
            max = Math.max(max, dp[i]);
        }
        
        return max;
    }
}

jiuzhang solution 1: Greedy
加上一个负数只可能越来越小,如果当前区间的sum<0,不管后面一个数是多少,加上当前值都会变小,因此可以直接把当前区间置0

class Solution {
    public int maxSubArray(int[] A) {
        int max = Integer.MIN_VALUE;
        int sum = 0;
        for(int i = 0; i < A.length; i++) {
            sum += A[i];
            max = Math.max(max, sum);
            sum = Math.max(sum, 0);
        }
        return max;
    }
}

leetcode solution2: divide and conquer

public class Solution {//divdie and conquer
    public int maxSubArray(int[] nums) {
        return Subarray(nums, 0 ,nums.length -1 );
    }
    public int Subarray(int[] A,int left, int right){
        if(left == right){return A[left];}
        int mid = left + (right - left) / 2;
        int leftSum = Subarray(A,left,mid);// left part 
        int rightSum = Subarray(A,mid+1,right);//right part
        int crossSum = crossSubarray(A,left,right);// cross part
        if(leftSum >= rightSum && leftSum >= crossSum){// left part is max
            return leftSum;
        }
        if(rightSum >= leftSum && rightSum >= crossSum){// right part is max
            return rightSum;
        }
        return crossSum; // cross part is max
    }
    //左右结合在一起的最大值。从中间向两端扩散
    public int crossSubarray(int[] A,int left,int right){
        int leftSum = Integer.MIN_VALUE;
        int rightSum = Integer.MIN_VALUE;
        int sum = 0;
        int mid = left + (right - left) / 2;
        for(int i = mid; i >= left ; i--){
            sum = sum + A[i];
            if(leftSum < sum){
                leftSum = sum;
            }
        }
        sum = 0;
        for(int j = mid + 1; j <= right; j++){
            sum = sum + A[j];
            if(rightSum < sum){
                rightSum = sum;
            }
        }
        return leftSum + rightSum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值