Weka -- 数据格式基本介绍

Weka是什么不多介绍,直接切入正题,简单介绍Weka的数据格式。

Weka存储数据的格式是ARFF(Attribute-Relation File Format)文件,是一种ASCII文本文件。如下例,weka自带的weather.arff文件。

% ARFF file for the weather data with some numric features 

@relation weather 

@attribute outlook {sunny, overcast, rainy} 
@attribute temperature real 
@attribute humidity real 
@attribute windy {TRUE, FALSE} 
@attribute play {yes, no} 

@data 

% 4 instances 

sunny,85,85,FALSE,no 
sunny,80,90,TRUE,no 
overcast,83,86,FALSE,yes 
rainy,70,96,FALSE,yes 


weka数据以“%”开始的行是注释,WEKA将忽略这些行。 
除去注释后,整个ARFF文件可以分为两个部分。

第一部分给出了头信息(Head information),包括了对关系的声明和对属性的声明。

第二部分给出了数据信息(Data information),即数据集中给出的数据。从“@data”标记开始,后面的就是数据信息了。 

关系声明 
关系名称在ARFF文件的第一个有效行来定义,格式为 
@relation <relation-name> 
<relation-name>是一个字符串。如果这个字符串包含空格,它必须加上引号(指英文标点的单引号或双引号)。 

属性声明 
属性声明用一列以“@attribute”开头的语句表示。数据集中的每一个属性都有它对应的“@attribute”语句,来定义它的属性名称和数据类型。 
声明语句的顺序很重要:它表明了该项属性在数据部分的位置;最后一个声明的属性被称作class属性,在分类或回归任务中,它是默认的目标变量。 
属性声明的格式为 
@attribute <attribute-name> <datatype> 
其中<attribute-name>是必须以字母开头的字符串。和关系名称一样,如果这个字符串包含空格,它必须加上引号。 

weka支持的<datatype>有四种,分别是 
numeric                                    数值型 
<nominal-specification>         分类(nominal)型 
string                                        字符串型 
date [<date-format>]              日期和时间型 
注意“integer”,“real”,“numeric”,“date”,“string”这些关键字是区分大小写的,而“relation”“attribute ”和“date”则不区分。

数值属性 
数值型属性可以是整数或者实数,但weka把它们都当作实数看待。 

分类属性 
分类属性由<nominal-specification>列出一系列可能的类别名称并放在花括号中:{<nominal-name1>, <nominal-name2>, <nominal-name3>, ...} 。数据集中该属性的值只能是其中一种类别。 
例如如下的属性声明说明“outlook”属性有三种类别:“sunny”,“ overcast”和“rainy”。而数据集中每个实例对应的“outlook”值必是这三者之一。 
@attribute outlook {sunny, overcast, rainy} 
如果类别名称带有空格,仍需要将之放入引号中。 

字符串属性 
字符串属性中可以包含任意的文本。这种类型的属性在文本挖掘中非常有用。 
示例: 
@ATTRIBUTE LCC string 

日期和时间属性 
日期和时间属性统一用“date”类型表示,它的格式是 
@attribute <name> date [<date-format>] 
其中<name>是这个属性的名称,<date-format>是一个字符串,来规定该怎样解析和显示日期或时间的格式,默认的字符串是ISO-8601所给的日期时间组合格式“yyyy-MM-ddTHH:mm:ss”。 
数据信息部分表达日期的字符串必须符合声明中规定的格式要求。

数据信息 
数据信息中“@data”标记独占一行,剩下的是各个实例的数据。 
每个实例占一行。实例的各属性值用逗号“,”隔开。如果某个属性的值是缺失值(missing value),用问号“?”表示,且这个问号不能省略。例如: 
@data 
sunny,85,85,FALSE,no 
?,78,90,?,yes 

字符串属性和分类属性的值是区分大小写的。若值中含有空格,必须被引号括起来。例如: 
@relation LCCvsLCSH 
    @attribute LCC string 
    @attribute LCSH string 
    @data 
    AG5, 'Encyclopedias and dictionaries.;Twentieth century.' 
    AS262, 'Science -- Soviet Union -- History.' 

日期属性的值必须与属性声明中给定的相一致。例如: 
@RELATION Timestamps 
    @ATTRIBUTE timestamp DATE "yyyy-MM-dd HH:mm:ss" 
    @DATA 
    "2001-04-03 12:12:12" 
    "2001-05-03 12:59:55" 

稀疏数据 
有的时候数据集中含有大量的0值(比如购物篮分析),这个时候用稀疏格式的数据存贮更加省空间。 
稀疏格式是针对数据信息中某个实例的表示而言,不需要修改ARFF文件的其它部分。看如下的数据: 
@data 
    0, X, 0, Y, "class A" 
    0, 0, W, 0, "class B" 
用稀疏格式表达的话就是 
@data 
    {1 X, 3 Y, 4 "class A"} 
    {2 W, 4 "class B"} 
每个实例用花括号括起来。实例中每一个非0的属性值用<index> <空格> <value>表示。<index>是属性的序号,从0开始计;<value>是属性值。属性值之间仍用逗号隔开。 
注意在稀疏格式中没有注明的属性值不是缺失值,而是0值。若要表示缺失值必须显式的用问号表示出来。 

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于weka的数据分类分析实验报告 1 实验目的 (1)了解决策树C4.5和朴素贝叶斯等算法的基本原理。 (2)熟练使用weka实现上述两种数据挖掘算法,并对训练出的模型进行测试和评价 。 2 实验基本内容 本实验的基本内容是通过基于weka实现两种常见的数据挖掘算法(决策树C4.5和朴素 贝叶斯),分别在训练数据上训练出分类模型,并使用校验数据对各个模型进行测试和 评价,找出各个模型最优的参数值,并对模型进行全面评价比较,得到一个最好的分类 模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起 构造出一个最优分类器,并利用该分类器对测试数据进行预测。 3 算法基本原理 (1)决策树C4.5 C4.5是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习: 给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互 斥的类别中的某一类。C4.5的目标是通过学习,找到一个从属性值到类别的映射关系, 并且这个映射能用于对新的类别未知的实体进行分类。C4.5由J.Ross Quinlan在ID3的基础上提出的。ID3算法用来构造决策树。决策树是一种类似流程图的树 结构,其中每个内部节点(非树叶节点)表示在一个属性上的测试,每个分枝代表一个 测试输出,而每个树叶节点存放一个类标号。一旦建立好了决策树,对于一个未给定类 标号的元组,跟踪一条有根节点到叶节点的路径,该叶节点就存放着该元组的预测。决 策树的优势在于不需要任何领域知识或参数设置,适合于探测性的知识发现。 从ID3算法中衍生出了C4.5和CART两种算法,这两种算法在数据挖掘中都非常重要。 属性选择度量又称分裂规则,因为它们决定给定节点上的元组如何分裂。属性选择度 量提供了每个属性描述给定训练元组的秩评定,具有最好度量得分的属性被选作给定元 组的分裂属性。目前比较流行的属性选择度量有--信息增益、增益率和Gini指标。 (2)朴素贝叶斯 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶 斯分类。 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的 思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项 出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗 来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十 有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或 亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶 斯的思想基础。 朴素贝叶斯分类的正式定义如下: 1)设x={a_1,a_2,...,a_m}为一个待分类项,而每个a为x的一个特征属性。 2)有类别集合C={y_1,y_2,...,y_n}。 3)计算P(y_1"x),P(y_2"x),...,P(y_n"x)。 4)如果P(y_k"x)=max{P(y_1"x),P(y_2"x),...,P(y_n"x)},则x in y_k。 那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做: 1)找到一个已知分类的待分类项集合,这个集合叫做训练样本集。 2)统计得到在各类别下各个特征属性的条件概率估计。即P(a_1"y_1),P(a_2"y_1), ...,P(a_m"y_1);P(a_1"y_2),P(a_2"y_2),...,P(a_m"y_2);...;P(a_1"y_n),P(a_2"y_n ),...,P(a_m"y_n)。 3)如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导: P(y_i"x)=frac{P(x"y_i)P(y_i)}{P(x)} 因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性 是条件独立的,所以有:P(x"y_i)P(y_i)=P(a_1"y_i)P(a_2"y_i)...P(a_m"y_i)P(y_i) =P(y_i)\prod^m_{j=1}P(a_j"y_i) 根据上述分析,朴素贝叶斯分类的流程分为三个阶段: 第一阶段——准备工作阶段,这个阶段的任务是为朴素贝叶斯分类做必要的准备,主要 工作是根据具体情况确定特征属性,并对每个特征属性进行适当划分,然后由人工对一 部分待分类项进行分类,形成训练样本集合。这一阶段的输入是所有待分类数据,输出 是特征属性和训练样本。这一阶段是整个朴素贝叶斯分类中唯一需要人工完成的阶段, 其质量对整个过程将有重要影响,分类器的质量很大程度上由特征属性、特征属性划分 及训练样本质量决定。 第二阶段——分类器训练阶段,这个阶段的任务就是生成分类器,主要工作是计算每个 类别在训练样本中的出现频率及

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值