matplotlib-21 stackplot堆积折线图

本文介绍了如何使用matplotlib库创建堆积折线图,通过在垂直方向堆叠不同数据集,便于观察各数据系列的总和及相对比例。示例中包含详细代码展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

matplotlib-21 堆积折线图

堆积折线图

将不同数据集的折线图在垂直方向上进行堆叠,可以绘制出折线统计图。

代码展示

# -*- coding: UTF-8 -*-
import matplotlib as mpl
import matplotlib.pyplot as plt

mpl.rcParams["font.sans-serif"] = ["SimHei"]
mpl.rcParams["axes.unicode_minus"] = False

x = [1, 2, 3, 4
A:Python可以利用pandas和matplotlib等工具绘制簇状柱形和带标记的堆积折线图。 绘制簇状柱形的步骤如下: 1. 读取Excel中的数据到pandas DataFrame中; 2. 根据需要对数据进行处理(例如,按照某一列进行分组等); 3. 利用matplotlib.pyplot模块绘制簇状柱形; 4. 设置坐标轴标签、例等,美化形。 绘制带标记的堆积折线图的步骤类似,只需要利用matplotlib.pyplot模块的plot函数绘制折线,使用stackplot函数绘制堆积,然后设置标记等即可。 下面是一个例子: ``` import pandas as pd import matplotlib.pyplot as plt # 读取Excel数据 data = pd.read_excel('sample.xlsx') # 按照'Region'列进行分组计算各项指标的总和 grouped_data = data.groupby('Region').sum() # 绘制簇状柱形 width = 0.35 # 柱形宽度 ind = range(len(grouped_data)) # 横坐标刻度 fig, ax = plt.subplots() rect1 = ax.bar(ind, grouped_data['Sales'], width, color='r', label='Sales') rect2 = ax.bar([i + width for i in ind], grouped_data['Profit'], width, color='b', label='Profit') # 设置坐标轴标签、例等 ax.set_xticks([i + width / 2 for i in ind]) ax.set_xticklabels(grouped_data.index) ax.set_xlabel('Region') ax.set_ylabel('Amount') ax.legend() # 绘制带标记的堆积折线图 fig, ax = plt.subplots() ax.plot(grouped_data.index, grouped_data['Sales'], marker='o', label='Sales') ax.stackplot(grouped_data.index, grouped_data['Profit'], grouped_data['Shipping Cost'], labels=['Profit', 'Shipping Cost']) ax.set_xlabel('Region') ax.set_ylabel('Amount') ax.legend() plt.show() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值