目前中国工业正面临提质增效的时代要求,层出不穷的创新商业模式,让制造业已没有办法在传统技术手段下,在关键的生产效率指标上给出优化空间。制造业迫切需要将数据融合到经营管理与生产运营活动中,以满足面向服务化、智能化的下一阶段转型对效率的需求。
在过去十余年以流程驱动的系统架构下,企业已经沉淀了海量数据,从数据中挖掘和分析价值,从流程驱动转向数据驱动或数据与流程混合驱动,这是数字化转型的一个颠覆性变革,也是数字化转型最核心的工作。
工业互联网:数据价值重塑及赋能的重要场景
作为近年来数字转型领域最热的名词-工业互联网,恰好是以业务数字化为载体,以数据资源为关键要素,以数字化技术和业务技术深度融合为发展路径,这与数字化转型路径完全契合,最终结果都指向企业多种要素重构。
在旧有的制造+互联网模式下,互联网仅用于商业信息交互,企业信息网络难以延伸到生产系统,大量的生产数据沉淀消失在工业控制网络。而以大数据智能化为依托的工业互联网,给出了新的制造业范式,实现人、机器、车间、企业等主体以及设计、研发、生产、管理、服务等产业链各环节的全要素的泛在互联,从而实现智能化生产、网络化协同、个性化定制、服务化延伸的制造业新模式新业态。
各个生产单元的数据化,是工业互联网的基础,没有数据,一切无从谈起。因此,实现设备上网采集数据,让生产数据可以及时传送至云端服务器,通过云服务实现运营维护甚至软件迭代是第一步。数据上云,才有沉淀大数据、生成人工智能的条件。更重要的是,制造企业日常生产所沉淀下来的海量数据,可以让管理者一目了然并洞察和理解数据价值,从而降低管理成本。通过先进的算法模型,这些采集而来的工业数据可以生成人工智能,从而对产品质量和生产成本进行自动分析,找到优化方案,并进行自我校正。这样就进一步削减了管理成本,让生产效能大大提升。
以管理议题为核心 软件服务再进化
降本、增效、提质、减存、创新是企业永恒不变的投资效益追求。过去,企业往往寄望于一套软件就能解决关键管理问题,并获得生产率的提升。现在,为了改善瓶颈,企业必须进行管理模式和营运流程的调整,在信息化的支撑下更有效率地达到成效。
以装备制造业为例,面对少量多样、产品生命周期短、长期产能过剩的产业趋势,单纯追求时间与效率、效率与效益已无法满足企业增强定制化竞争新优势、创新服务与创造价值及差异化的数字化转型需求。面对以机台联网大数据上云为基础的智能化趋势,装备制造企业已开始寻求通过基于机器学习的大数据预测性维修分析,对机台设备运作履历监控及异常侦测预警,以实现更长的响应时间,有效预防设备严重故障及在制品异常损失。有数据显示,预测性维护可以减少装备制造企业的设备停机时间最高可达50%,降低10%-40%的设备维修成本,通过延长机器的有效生命,降低设备资产投资幅度可达5%左右。
因此,如何以数据驱动,连接一切资源,并对资源再整合、再利用,建立以“管理议题”为核心的经营循环,是企业运作数字化的根本目的。要达成这个目标,网络化的、分布式的知识、流程、机制的建立就是重中之重。
作为长期专注于制造企业数字化与智能化转型的服务商,历经从传统软件行业向知识服务行业的演化,面对数字经济时代下的企业智能变革新需求,深感企业的信息化不再只是让表单流程作业系统化,更是以改善管理议题为导向,以数据交换服务赋能业务流程优化,确保营运绩效达成。在需求感知期、方案导入期、管理精进期与经营优化期这四大应用周期,通过稳态系统与敏态方案的融合应用,将传统软件服务进化为糅合管理议题并可量化效益的服务商品,并通过一套系统化的管理思维 --“六要素”管理思想:知识、流程、机制、工具、指标、预警实现落地,从而协助企业实现龙卷风暴式的,持续以新的管理议题为导向的四阶段全程价值服务。