10.1 基本定义
这一章真简单啊,看起来真轻松,估计这本书也就这9,10,11章能看起来稍微轻松点。
习题
10.1.1
如果
limx→x0;x∈X∖{x0}f(x)−f(x0)x−x0=L
,由于
Y⊂X
,所以
limx→x0;x∈Y∖{x0}f(x)−f(x0)x−x0=L
与注10.1.2不矛盾因为3不是X的极限点。
10.1.2
如果
x=x0
,等号两边都等于0。
如果
x≠x0
,根据导数的定义,只要
|x−x0|≤δ
,就有
|f(x)−f(x0)x−x0−L|≤ε
,证明完成。
10.1.3
根据命题10.1.7只要
|x−x0|≤δ
,就有
|f(x)−f(x0)|≤(L+ε)(x−x0)
,这样,对于选定的
ε
,只要
δ≤ε/(L+ε)
即可。
10.1.4
(a)直接根据定义
(b)直接根据定义
(c)根据定义和命题9.3.14
(e)根据定义和命题9.3.14
(f)根据定义和命题9.3.14
(d)根据提示
(g)
|1/g(x)−1/g(x0)x−x0=|g(x)−g(x0)x−x01g(x)g(x0)
,证明完成。
(h)结合(d)和(g)可以得出。
10.1.5
归纳法
n=1成立
归纳假设
f′(x)=nxn−1
,那么对于
g(x)=xn+1
,根据10.1.13(d),
g′=xf′(x)+f(x)=nxn+xn=(n+1)xn
,证明完成。
10.1.6
f(x)=xn=1/x−n
,-n为自然数除去0,只要对
g(x)=1/xn,n∈N
证明即可,用归纳法容易证明。
10.1.7
如果理解了提示,证明就完成了,其它数里面证明方式大都是用第二种提示。
limgf(x)−gf(x0)x−x0=limgf(x)−gf(x0)f(x)−f(x0)f(x)−f(x0)x−x0
10.2 局部最大、局部最小以及导数
习题
10.2.1
只考虑最大值的情况,最小值情况类似。
那么对于
x∈X∩(x0−δ,x0)
,有
f(x)−f(x0)x−x0≥0
,而对于
x∈X∩(x0,x0+δ)
,有
f(x)−f(x0)x−x0≤0
,由于
x0
点可微,那么极限
f(x)−f(x0)x−x0,(x0−δ,x0+δ)
必然存在,那么必须等于0.
10.2.2 f(x)=-|x|,在0点不可微,所以不矛盾。
10.2.3 f(x)=x3 ,10.2.6的逆命题不成立。
10.2.4
如果整个区间函数值都相等,那么
g′(a)=0
。
否则必然有某个点不等于g(a),并且根据命题9.6.7,函数在ab外的某点达到最大值(或最小值,类似讨论),假设点c处
f(c)>f(a)=f(b)
,那么根据命题10.2.6,f’(c)=0。
10.2.5
考虑
g(x)=f(x)−f(b)−f(a)b−ax
,那么g(a)=g(b),再利用定理10.2.7,证明完成。
10.2.6根据推论10.2.9,对于任意x、y,存在a满足 |f(y)−f(x)|=|f′(a)||(y−x)|≤M|y−x| 。
10.2.7要证明一致连续,需要证明对于任意 ε ,存在 δ ,满足只要 |x−y|≤δ ,就有 |f(x)−f(y)|≤ε ,对于选定 ε ,根据习题10.2.6,只要满足 x−y≤ε/M ,就有 f(y)−f(x)|=|f′(a)||(y−x)|≤Mε/M=ε ,x任意选择,证明完成。
10.3 单调函数及其导数
习题
10.3.1
对于
x>x0
,
f(x)−f(x0)x−x0≥0
对于
x<x0
,
f(x)−f(x0)x−x0≥0
联合起来结论得证。
注意,就算严格增,上面的等号也是有可能成立的,如下面习题10.3.3,因为大于0的序列的极限可能是0,虽然不可能是负数。
10.3.2
f(x)=x,x∈(−1,0]
f(x)=2x,x∈(0,1)
在0点不可微,所以不矛盾。
10.3.3 f(x)=x3
10.3.4对于任意
c,d∈[a,b]
,存在
x∈(c,d)
,满足
f(c)−f(d)=f′(x)(c−d)
。
那么如果
f′(x)>0则f(c)>f(d)
如果
f′(x)<0则f(c)<f(d)
如果
f′(x)=0则f(c)=f(d)
10.3.5
f(x)=x,x∈[0,1]
f(x)=x−2,x∈[2,3]
10.4 反函数及其导数
定理10.4.2真命中为什么
yn
收敛能断定
xn
收敛?提示f为双射
事实上,
f−1
连续,根据9.4.1连续函数的定义,
yn
收敛则必然
xn
收敛,并且收敛到
f−1(y0)=x0
。
习题
10.4.1
(a)命题9.8.3说连续严格单调增的函数的反函数也是连续严格单调增的
(b)
y=x1n,g′(x)=1/f′(y)=1/nyn−1=1nx1n−1
10.4.2 q=a/b
(a)
f′(x)=(x1b)a=a(x1b)a−1∗1bx1b−1=abxab−1=qxq−1
(b)
f(x)=xq
在1点的导数的定义就是左边的式子,而根据(a),应该等于q
10.4.3
(a) 根据极限定义,需要证明对于任意
ε
,找到
δ
,可以找到比例数
ε1
满足
0<ε1<ε
,并且当比例数
δ1
满足
|x−1|≤δ
,就有
|f(x)−f(1)x−1−α|≤ε1
,只要
δ<δ1
就可以满足条件。
(b)这个证明感觉可能不如上面那些简单,需要严格用微分定义。需要证明
limxα−xα0x−x0=αxα−10
。
根据实数定义,可以取任意逼近
α
的序列
an
根据习题10.4.2,
limxan−xan0x−x0=anxan−10
。
上面的等式右边根据计算算律,容易得到极限等于
αxα−10
,而等式左边对n取极限就是
xα
的定义,证明完成。
10.5 L’Hopital法则
习题
10.5.1
首先证明在这个区域内
g(x)≠0
,根据Newton逼近,命题10.1.7,可以取
ε=0.1×g′(x0)
,那么存在
δ
,使得如果
x∈(x0−δ,x0+δ)
,则
|f(x)−g′(x0)(x−x0)|≤0.1×g′(x0)|x−x0|
,这样容易得到不论在
x0
左边还是右边,
g′(x0)
大于0还是小于0,g(x)都不等于0。
极限相等的证明
f′(x0)g′(x0)=limf(x)−f(x0)x−x0/g(x)−g(x0)x−x0=limf(x)g(x)
10.5.2
f’(x)在0点不存在,不满足使用L’Hopital法则的条件。