陶哲轩实分析-第10章 函数的微分

10.1 基本定义

这一章真简单啊,看起来真轻松,估计这本书也就这9,10,11章能看起来稍微轻松点。
习题
10.1.1
如果 limxx0;xX{x0}f(x)f(x0)xx0=L ,由于 YX ,所以 limxx0;xY{x0}f(x)f(x0)xx0=L
与注10.1.2不矛盾因为3不是X的极限点。

10.1.2
如果 x=x0 ,等号两边都等于0。
如果 xx0 ,根据导数的定义,只要 |xx0|δ ,就有 |f(x)f(x0)xx0L|ε ,证明完成。

10.1.3
根据命题10.1.7只要 |xx0|δ ,就有 |f(x)f(x0)|(L+ε)(xx0) ,这样,对于选定的 ε ,只要 δε/(L+ε) 即可。

10.1.4
(a)直接根据定义
(b)直接根据定义
(c)根据定义和命题9.3.14
(e)根据定义和命题9.3.14
(f)根据定义和命题9.3.14
(d)根据提示
(g) |1/g(x)1/g(x0)xx0=|g(x)g(x0)xx01g(x)g(x0) ,证明完成。
(h)结合(d)和(g)可以得出。

10.1.5
归纳法
n=1成立
归纳假设 f(x)=nxn1 ,那么对于 g(x)=xn+1 ,根据10.1.13(d), g=xf(x)+f(x)=nxn+xn=(n+1)xn ,证明完成。

10.1.6
f(x)=xn=1/xn ,-n为自然数除去0,只要对 g(x)=1/xnnN 证明即可,用归纳法容易证明。

10.1.7
如果理解了提示,证明就完成了,其它数里面证明方式大都是用第二种提示。
limgf(x)gf(x0)xx0=limgf(x)gf(x0)f(x)f(x0)f(x)f(x0)xx0

10.2 局部最大、局部最小以及导数

习题
10.2.1
只考虑最大值的情况,最小值情况类似。
那么对于 xX(x0δ,x0) ,有 f(x)f(x0)xx00 ,而对于 xX(x0,x0+δ) ,有 f(x)f(x0)xx00 ,由于 x0 点可微,那么极限 f(x)f(x0)xx0(x0δ,x0+δ) 必然存在,那么必须等于0.

10.2.2 f(x)=-|x|,在0点不可微,所以不矛盾。

10.2.3 f(x)=x3 ,10.2.6的逆命题不成立。

10.2.4
如果整个区间函数值都相等,那么 g(a)=0
否则必然有某个点不等于g(a),并且根据命题9.6.7,函数在ab外的某点达到最大值(或最小值,类似讨论),假设点c处 f(c)>f(a)=f(b) ,那么根据命题10.2.6,f’(c)=0。

10.2.5
考虑 g(x)=f(x)f(b)f(a)bax ,那么g(a)=g(b),再利用定理10.2.7,证明完成。

10.2.6根据推论10.2.9,对于任意x、y,存在a满足 |f(y)f(x)|=|f(a)||(yx)|M|yx|

10.2.7要证明一致连续,需要证明对于任意 ε ,存在 δ ,满足只要 |xy|δ ,就有 |f(x)f(y)|ε ,对于选定 ε ,根据习题10.2.6,只要满足 xyε/M ,就有 f(y)f(x)|=|f(a)||(yx)|Mε/M=ε ,x任意选择,证明完成。

10.3 单调函数及其导数

习题
10.3.1
对于 x>x0 f(x)f(x0)xx00
对于 x<x0 f(x)f(x0)xx00
联合起来结论得证。
注意,就算严格增,上面的等号也是有可能成立的,如下面习题10.3.3,因为大于0的序列的极限可能是0,虽然不可能是负数。

10.3.2
f(x)=x,x(1,0]
f(x)=2x,x(0,1)
在0点不可微,所以不矛盾。

10.3.3 f(x)=x3

10.3.4对于任意 c,d[a,b] ,存在 x(c,d) ,满足 f(c)f(d)=f(x)(cd)
那么如果 f(x)>0f(c)>f(d)
如果 f(x)<0f(c)<f(d)
如果 f(x)=0f(c)=f(d)

10.3.5
f(x)=x,x[0,1]
f(x)=x2,x[2,3]

10.4 反函数及其导数
定理10.4.2真命中为什么 yn 收敛能断定 xn 收敛?提示f为双射
事实上, f1 连续,根据9.4.1连续函数的定义, yn 收敛则必然 xn 收敛,并且收敛到 f1(y0)=x0

习题
10.4.1
(a)命题9.8.3说连续严格单调增的函数的反函数也是连续严格单调增的
(b) y=x1ng(x)=1/f(y)=1/nyn1=1nx1n1

10.4.2 q=a/b
(a) f(x)=(x1b)a=a(x1b)a11bx1b1=abxab1=qxq1
(b) f(x)=xq 在1点的导数的定义就是左边的式子,而根据(a),应该等于q

10.4.3
(a) 根据极限定义,需要证明对于任意 ε ,找到 δ ,可以找到比例数 ε1 满足 0<ε1<ε ,并且当比例数 δ1 满足 |x1|δ ,就有 |f(x)f(1)x1α|ε1 ,只要 δ<δ1 就可以满足条件。

(b)这个证明感觉可能不如上面那些简单,需要严格用微分定义。需要证明 limxαxα0xx0=αxα10
根据实数定义,可以取任意逼近 α 的序列 an 根据习题10.4.2, limxanxan0xx0=anxan10
上面的等式右边根据计算算律,容易得到极限等于 αxα10 ,而等式左边对n取极限就是 xα 的定义,证明完成。

10.5 L’Hopital法则

习题
10.5.1
首先证明在这个区域内 g(x)0 ,根据Newton逼近,命题10.1.7,可以取 ε=0.1×g(x0) ,那么存在 δ ,使得如果 x(x0δ,x0+δ) ,则 |f(x)g(x0)(xx0)|0.1×g(x0)|xx0| ,这样容易得到不论在 x0 左边还是右边, g(x0) 大于0还是小于0,g(x)都不等于0。
极限相等的证明
f(x0)g(x0)=limf(x)f(x0)xx0/g(x)g(x0)xx0=limf(x)g(x)

10.5.2
f’(x)在0点不存在,不满足使用L’Hopital法则的条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值