《编译原理-龙书》练习第4章

4.2 上下文无关文法

**4.2.7节中L={a^nb^n|n>=1}怎么用文法表示?
S -> aAb
A -> ab| ε

4.2.1

1) E -> EE* 

-> EE+E*

-> aa+a*

左到右依次a

2) 与1)一样,只是最后一步右到左依次a

3)       E

      E       E  *

 E E +

id id        id

4)无二义性,但是怎么证明呢?

5)+*组成的后缀表达式

4.2.3 如果是正则表达式,可以采用4.2.7的方法转成文法

1) (0*1+)* 根据DNF推出:

S -> 0A

S -> 1S

S -> ε

A -> 1S

2)

S -> ABA

A -> BB

B -> 0|1|ε

4.2.4

对于A->X[Y]Z,可以表示为

A->XBZ

B->Y|ε

对于A->X{YZ},可以表示为

A->XB

B->CC

C->YZ|ε

4.2.5 stmt -> if expr then stmt [ else stmt ] | begin stmt{; stmt} end

4.2.6 基本的正则表达式还剩*,表示为A->Z*,可以改写为:

A->BB

B->Z|ε

4.2.7 1)

建立一个集合表示所有非“无用符号”集合T,开始置为所有终结符号

集合A表示所有推导式,默认不打标记

for(所有没有打标记的A中推导式)

{

 if( 如果右边只有T中符号集合)

  {

    将这个表达式打标记

    表达式左边符号加入集合T

  }

 if(一个循环结束没有新的表达式被打标记)

   循环退出

}

将开始符号加入T

2)非“无用符号”集合T会依次加入{0, B, S},所以A是无用符号

4.2.8 读懂这道题费了好大劲,不知到是因为最后一道题了还是比较晚了(2012-12-20 22:49,离世界末日不远了)

1)前2行不变,后面改为:

option -> A1|A2|...|An

A1 -> a1|b1

...

An -> an|bn

2)又花了一段时间读懂了这个题目,生成的串固定长度n,不考虑<n的串

n!*n的产生式是这样的,1)中的第一行改为:

option->Aa1|Aa2...|Aan

其中a1有n种选择(A1-An),a2有剩下的n-1种.....an为剩下的一种。

这些产生式一共包括n!个长度为n的产生式,即O(n!*n)


如果有一个O(n*2^n)的产生式序列,那么可能是n个长度为2^n的产生式,具体构造方法没想出来


4.3 设计文法

4.3.1 1)没有左公因子

2)有左递归,不能自顶向下语法分析

3)

rexpr -> rterm | E1

E1 -> +rterm | ε

rterm -> rfactor | F1

F1 -> rfactor | ε

rfactor -> rprimary | P1

P1 -> * | ε

rprimary -> a|b

4)目前没有左递归、左公因子,可以自顶向下语法分析

4.3.3 考虑 if E1 then if E2 else if E3 then MATCHED1 else MATCHED2

if E3 then MATCHED1 else MATCHED2不能确定跟前面两个if中的哪个匹配

4.4 自顶向下的语法分析

4.4.1 1)S -> 0S1 | 01
S -> 0T
T -> S1|1
FIRST(S) = {0}
FIRST(T) = {0,1}
FOLLOW(S) = {1,$}
FOLLOW(T) = {1,$}
 01$
SS->0T  
TT->S1T->1 


4.4.2 S -> SS+ | SS* | a
提取左公因子
S -> SST|a
T -> +|*
消除左递归

S -> aX

X -> STX |ε 

T -> +|*

FIRST(S) = {a}
FIRST(X) = {a}
FOLLOW(S) = {+,*,$}
FOLLOW(X) = {+,*,$}
提取左公因子
 a+*$
SaX   
XSTXεεε
T +* 

4.4.5 感觉可以识别aaaaaa,为啥不行呢?

aaaaaa aSa

  aaaaa  Sa

  aaaaa  aSaa 如果可以向前看4个输入符号,则可以识别aaaaa,否则,会继续采用S -> aSa

    aaaa  Saa    aSaaa

      aaa  aSaaaa

        aa  Saaaa    aSaaaaa

          a  Saaaaa  需要回溯,回溯到一定程度就可以识别

4.4.6 1)如果产生式左边只能生成ε,则将其在文法中所有出现的地方删除即可

否则,就是类似T -> X | ε,这种情况下,将T在其他推导中出现的地方用这两个替换

这样有可能粗先左递归或左公因子。

2)

S -> aSbS  => S -> aaSbSbaSbS | abSaSbbSaS | aSbS

S -> bSaS  => S -> baSbSaaSbS | bbSaSabSaS | bSaS

S -> ε

综合得到S -> aaSbSbaSbS | abSaSbbSaS | aSbS | baSbSaaSbS | bbSaSabSaS | bSaS

4.4.7 1)如果有A=》B,则将B进行替换,替换为B可推导得到的表达式

2)E -> E+T | T   T -> T*F | F   F->(E) | id 进行替换如下:

T -> T*F | (E) | id

E -> E+T | T*F | (E) | id

3)一步推导得到的环可以直接删除,如果是多步,不失一般性,假设为2步,由于文法中不存在ε,所以必然存在这样的推导:

A->B B->A,我们可以爱用上面方法将B去掉,并去掉一步环。

4.4.8 根据4.4.7不难得到,但是得到的结果有左递归

4.4.9 如果n*n的表能够构造成功直到j-i=n-1,说明串在这个语言中

4.5 自底向上的语法分析

4.5.1  S -> 0S1 | 01

1)000111 最右推导:S -> 0S1 -> 00S11 -> 000111

最中间的01

2)00S11   最右推导: S -> 0S1 ->00S11

中间的0S1

4.5.2  S -> SS+ |SS* | a

1)SS+A*+      SS+

2)SS+a*a+   SS+

3)aaa*a++    a

4.5.3

1)

$            000111$

$0001            11$

$00S              11$

$00S1              1$

$0S                   1$

$0S1                   $

$S                       $

2)

aaa*a++

Saa*a++

SSa*a++

SSS*a++

SSa++

SSS++

SS+

S

4.6 LR语法分析技术介绍:简单LR技术

4.6.1

1) 0,0S,00S....

2)

4.6.2 S -> SS+| SS* | a

采用图4-33中算法处理 

(1) S`->S

(2) S -> SS+

(3) S -> SS*

(4) S -> a

01 0S2 0a3 1S4 3+5 3*

S`->.S

S->.SS+

S->.SS*

S->.a

S`->S.

S->S.S+

S->S.S*

S->.a

1$ = accept

S->a.

S->SS.+

S->SS.*

S->SS+.S->SS*.

采用算法4.46

FOLLOW(S) = {+, *,a $}    FOLLOW(+)={+, *, a}    FOLLOW(*)={+, *, a}   FOLLOW(a)={+, *, a}

 a+*$S
0s2   1
1s2  acc3
2r4r4r4  
3 s4s5  
4r2r2r2  
5r3r3r3  

没有发现哪个ACTION既有归约又有移入操作,应该是SLR文法

4.6.3

符号输入动作
0 aa*a+$移入
02aa*a+$归约S->a
01Sa*a+$移入
012Sa*a+$归约S->a
013SS*a+$移入
0135SS*a+$归约S->SS*
01Sa+$移入
012Sa+$归约S->a
013SS+$移入
0134SS+$归约S->SS+
01S$接收
    


对于下面两题

LL(1)文法特点:需要满足4.4.3中的三个条件

SLR(1)文法特点:在输入某个表示串以后,有移入/规约冲突或规约/规约冲突

LL文法是LR文法的一个真子集,而不是SLR的

4.6.5

S`->S

S -> AaAb | BbBa

A ->ε

B ->ε

构造LR(0)自动机

0

S`->.S

S->.AaAb

S->.BbBa

A->.ε

B->.ε

1 0S

S`->S

没法继续构造下去

4.6.6

FIRST(SA)与FIRST(A)都包含{a}。所以不是LL(1)的

4.6.7 1)

S -> Aibi          n个

Ai -> ajAi          n^2-n个

Ai -> aj             n^2-n个 

2)考虑其中某个i和j

index项集

贡献数量

 
0

S`->.S 

S->.Aibi 

Ai->.ajAi 

Ai->.aj

1S`->.S
S->.A1b1 ...
S->.Anbn
A1->.a2A1...
A1->.anA1...
...
An->.a1An...
An->.an-1An
1
0->S
S`->S.1S`->S.
2
0->Ai
S->Ai.binn个S->Ai.bi
3
0->aj

Ai->aj.Ai

Ai->aj.

Ai->.ajAi

Ai->.aj

n对于a1
A2->a1.A2...
An->a1.An
A2->.ajA2
A2->.aj
...an
4
2->bi
S->Aibi.nn个S->Aibi.
5
3->Ai, 6Ai
Ai->ajAi.n*(n-1)对于a1
输入A2...An
6
3->aj,6->aj
Ai->aj.Ai
Ai->.ajAi
Ai->.aj
n*n对于a1
输入a1,a3...an
A2->aj.A2
A2->aj.
    

这样算下来是2n*n+2n+2

结果应该是2^n+n^2+n,看来我算错了,求高手指点

如果势2^n那说明状态数量太多了,手工构造太困难了,做4.6练习过程感觉中间太容易出错了(手动计算的情况)

4.6.8

4.6.9

index项集 
0S'->.S
S->.AS
S->.b
A->.SA
A->.a
 
1
0->S
S'->S.
A->S.A
A->.SA
A->.a
->$
accept
2
0->A
S->A.S
S->.AS
S->.b
A->.SA
A->.a
 
3
0->a
1->a
2->a
5->a
7->a
A->a. 
4
0->b
S->b. 
5
1->S
5->S
7->S
A->S.A
A->.SA
A->.a
 
6
1->A
5->A
7->A
A->SA. 
7
2->S
S->AS.
A->S.A
A->.SA
A->.a
 
8
2->A
8->A
S->A.S
S->.AS
S->.b
 
9
8->S
A->AS. 

FIRST(A)、FIRST(S)、FOLLOW(A)、FOLLOW(S)都是{a,b},7可能有冲突,因为当前状态输入a的情况下,不能确定按S->AS.规约还是移入a。

4.7 更强大的LR语法分析器

学习编译原理真是个痛并快乐的过程,网上说龙书翻译的还行,个人感觉也是如此,只是学习的时候如果希望从头读一遍就理解是不可能的,通常要看3-4次才能理解,而且每次阅读的时候都会有新的收获。

学习4.7.5的时候怎么都想不明白例4.64怎么得出的自发向前看符号,再回头看一遍4.7,并且手动构造下LR项集族,马上明白了。

学习这一节最重要的是理解4.7.2开头对于算法4.53的解释,明白了以后这一节基本也就没问题了

为理解4.7.5中算法执行过程,构造例4.6的规范LR项集族

index项集GOTO
0S`->.S    ,$
S->.L=R ,$
S->.R     ,$
L->.*R    ,=
L->.id     ,=
R->L      ,$
 
1  
2  
3  
4  
5  
6  
7  
8  
8  

4.7.1 FIRST(S) = {a}

S'->S

S->SS+

S->SS*

S->a

构造LR项集族如下


index项集GOTO
0S`->.S     , $
S->.SS+  ,a
S->.SS*   ,a
S->.a        ,a
 
1
0->S
S'->S.       ,$
S->S.S+   ,a/+
S->S.S*   ,a/*
S->.a        ,a/+/*
 
2
0->a
S->a.        ,a 
3
1->S
S->SS.+    ,a/+
S->SS.*     ,a/*
S->.A          ,a/+/*
 
4
1->a
S->a.          ,a/+/* 
5
3->+
S->SS+.     ,a/+ 
6
3->*
S->SS*.      ,a/* 
   

LALR项集族只需要将上面2/4合并即可

4.7.3 算法4.6.3前后看了至少5遍,稍微有了些理解

  INIT12
0S'->.S$$$
1S'->S.
S->S.S+
S->S.S*
aaa
2S->a.aaa
3S->SS.+
S->SS.*
 a/+/*a/+/*
4S->SS+.  a/+
5S->SS*.  a/*

4.7.4/4.7.5 类似例4.58



index项集GOTO
0S`->.S    ,$
S->.L=R ,$
S->.R     ,$
L->.*R    ,=
L->.id     ,=
R->L      ,$
 
1  
2  
3  
4  
5  
6  
7  
8  
8  
编译原理龙书答案 完整性高 第二 2.2 Exercises for Section 2.2 2.2.1 Consider the context-free grammar: S -> S S + | S S * | a Show how the string aa+a* can be generated by this grammar. Construct a parse tree for this string. What language does this grammar generate? Justify your answer. answer S -> S S * -> S S + S * -> a S + S * -> a a + S * -> a a + a * L = {Postfix expression consisting of digits, plus and multiple signs} 2.2.2 What language is generated by the following grammars? In each case justify your answer. S -> 0 S 1 | 0 1 S -> + S S | - S S | a S -> S ( S ) S | ε S -> a S b S | b S a S | ε ⧗ S -> a | S + S | S S | S * | ( S ) answer L = {0n1n | n>=1} L = {Prefix expression consisting of plus and minus signs} L = {Matched brackets of arbitrary arrangement and nesting, includes ε} L = {String has the same amount of a and b, includes ε} ? 2.2.3 Which of the grammars in Exercise 2.2.2 are ambiguous answer No No Yes Yes Yes 2.2.4 Construct unambiguous context-free grammars for each of the following languages. In each case show that your grammar is correct. Arithmetic expressions in postfix notation. Left-associative lists of identifiers separated by commas. Right-associative lists of identifiers separated by commas. Arithmetic expressions of integers and identifiers with the four binary operators +, - , *, /. answer 1. E -> E E op | num 2. list -> list , id | id 3. list -> id , list | id 4. expr -> expr + term | expr - term | term term -> term * factor | term / factor | factor factor -> id | num | (expr) 5. expr -> expr + term | expr - term | term term -> term * unary | term / unary | unary unary -> + factor | - factor factor - > id | num | (expr) 2.2.5 Show that all binary strings generated by the following grammar have values divisible by 3. Hint. Use induction on the number of nodes in a parse tree. num -> 11 | 1001 | num 0 | num num Does the grammar generate all binary strings with values divisible by 3? answer prove any string derived from the grammar can be considered to be a sequence consisting of 11, 1001 and 0, and not prefixed with 0. the sum of this string is: sum = Σn (21 + 20) * 2 n + Σm (23 + 20) * 2m = Σn 3 * 2 n + Σm 9 * 2m It is obviously can divisible by 3. No. Consider string "10101", it is divisible by 3, but cannot derived from the grammar. Question: any general prove? 2.2.6 Construct a context-free grammar for roman numerals. Note: we just consider a subset of roman numerals which is less than 4k. answer wikipedia: Roman_numerals via wikipedia, we can categorize the single noman numerals into 4 groups: I, II, III | I V | V, V I, V II, V III | I X then get the production: digit -> smallDigit | I V | V smallDigit | I X smallDigit -> I | II | III | ε and we can find a simple way to map roman to arabic numerals. For example: XII => X, II => 10 + 2 => 12 CXCIX => C, XC, IX => 100 + 90 + 9 => 199 MDCCCLXXX => M, DCCC, LXXX => 1000 + 800 + 80 => 1880 via the upper two rules, we can derive the production: romanNum -> thousand hundred ten digit thousand -> M | MM | MMM | ε hundred -> smallHundred | C D | D smallHundred | C M smallHundred -> C | CC | CCC | ε ten -> smallTen | X L | L smallTen | X C smallTen -> X | XX | XXX | ε digit -> smallDigit | I V | V smallDigit | I X smallDigit -> I | II | III | ε 2.3 Exercises for Section 2.3 2.3.1 Construct a syntax-directed translation scheme that trans­ lates arithmetic expressions from infix notation into prefix notation in which an operator appears before its operands; e.g. , -xy is the prefix notation for x - y . Give annotated parse trees for the inputs 9-5+2 and 9-5*2.。 answer productions: expr -> expr + term | expr - term | term term -> term * factor | term / factor | factor factor -> digit | (expr) translation schemes: expr -> {print("+")} expr + term | {print("-")} expr - term | term term -> {print("*")} term * factor | {print("/")} term / factor | factor factor -> digit {print(digit)} | (expr) 2.3.2 Construct a syntax-directed translation scheme that trans­ lates arithmetic expressions from postfix notation into infix notation. Give annotated parse trees for the inputs 95-2* and 952*-. answer productions: expr -> expr expr + | expr expr - | expr expr * | expr expr / | digit translation schemes: expr -> expr {print("+")} expr + | expr {print("-")} expr - | {print("(")} expr {print(")*(")} expr {print(")")} * | {print("(")} expr {print(")/(")} expr {print(")")} / | digit {print(digit)} Another reference answer E -> {print("(")} E {print(op)} E {print(")"}} op | digit {print(digit)} 2.3.3 Construct a syntax-directed translation scheme that trans­ lates integers into roman numerals answer assistant function: repeat(sign, times) // repeat('a',2) = 'aa' translation schemes: num -> thousand hundred ten digit { num.roman = thousand.roman || hundred.roman || ten.roman || digit.roman; print(num.roman)} thousand -> low {thousand.roman = repeat('M', low.v)} hundred -> low {hundred.roman = repeat('C', low.v)} | 4 {hundred.roman = 'CD'} | high {hundred.roman = 'D' || repeat('X', high.v - 5)} | 9 {hundred.roman = 'CM'} ten -> low {ten.roman = repeat('X', low.v)} | 4 {ten.roman = 'XL'} | high {ten.roman = 'L' || repeat('X', high.v - 5)} | 9 {ten.roman = 'XC'} digit -> low {digit.roman = repeat('I', low.v)} | 4 {digit.roman = 'IV'} | high {digit.roman = 'V' || repeat('I', high.v - 5)} | 9 {digit.roman = 'IX'} low -> 0 {low.v = 0} | 1 {low.v = 1} | 2 {low.v = 2} | 3 {low.v = 3} high -> 5 {high.v = 5} | 6 {high.v = 6} | 7 {high.v = 7} | 8 {high.v = 8} 2.3.4 Construct a syntax-directed translation scheme that trans­ lates roman numerals into integers. answer productions: romanNum -> thousand hundred ten digit thousand -> M | MM | MMM | ε hundred -> smallHundred | C D | D smallHundred | C M smallHundred -> C | CC | CCC | ε ten -> smallTen | X L | L smallTen | X C smallTen -> X | XX | XXX | ε digit -> smallDigit | I V | V smallDigit | I X smallDigit -> I | II | III | ε translation schemes: romanNum -> thousand hundred ten digit {romanNum.v = thousand.v || hundred.v || ten.v || digit.v; print(romanNun.v)} thousand -> M {thousand.v = 1} | MM {thousand.v = 2} | MMM {thousand.v = 3} | ε {thousand.v = 0} hundred -> smallHundred {hundred.v = smallHundred.v} | C D {hundred.v = smallHundred.v} | D smallHundred {hundred.v = 5 + smallHundred.v} | C M {hundred.v = 9} smallHundred -> C {smallHundred.v = 1} | CC {smallHundred.v = 2} | CCC {smallHundred.v = 3} | ε {hundred.v = 0} ten -> smallTen {ten.v = smallTen.v} | X L {ten.v = 4} | L smallTen {ten.v = 5 + smallTen.v} | X C {ten.v = 9} smallTen -> X {smallTen.v = 1} | XX {smallTen.v = 2} | XXX {smallTen.v = 3} | ε {smallTen.v = 0} digit -> smallDigit {digit.v = smallDigit.v} | I V {digit.v = 4} | V smallDigit {digit.v = 5 + smallDigit.v} | I X {digit.v = 9} smallDigit -> I {smallDigit.v = 1} | II {smallDigit.v = 2} | III {smallDigit.v = 3} | ε {smallDigit.v = 0} 2.3.5 Construct a syntax-directed translation scheme that trans­ lates postfix arithmetic expressions into equivalent prefix arithmetic expressions. answer production: expr -> expr expr op | digit translation scheme: expr -> {print(op)} expr expr op | digit {print(digit)} Exercises for Section 2.4 2.4.1 Construct recursive-descent parsers, starting with the follow­ ing grammars: S -> + S S | - S S | a S -> S ( S ) S | ε S -> 0 S 1 | 0 1 Answer 1) S -> + S S | - S S | a void S(){ switch(lookahead){ case "+": match("+"); S(); S(); break; case "-": match("-"); S(); S(); break; case "a": match("a"); break; default: throw new SyntaxException(); } } void match(Terminal t){ if(lookahead = t){ lookahead = nextTerminal(); }else{ throw new SyntaxException() } } 2) S -> S ( S ) S | ε void S(){ if(lookahead == "("){ S(); match("("); S(); match(")"); S(); } } 3) S -> 0 S 1 | 0 1 void S(){ switch(lookahead){ case "0": match("0"); S(); match("1"); break; case "1": // match(epsilon); break; default: throw new SyntaxException(); } } Exercises for Section 2.6 2.6.1 Extend the lexical analyzer in Section 2.6.5 to remove com­ ments, defined as follows: A comment begins with // and includes all characters until the end of that line. A comment begins with /* and includes all characters through the next occurrence of the character sequence */. 2.6.2 Extend the lexical analyzer in Section 2.6.5 to recognize the relational operators <, =, >. 2.6.3 Extend the lexical analyzer in Section 2.6.5 to recognize float­ ing point numbers such as 2., 3.14, and . 5. Answer Source code: commit 8dd1a9a Code snippet(src/lexer/Lexer.java): public Token scan() throws IOException, SyntaxException{ for(;;peek = (char)stream.read()){ if(peek == ' ' || peek == '\t'){ continue; }else if(peek == '\n'){ line = line + 1; }else{ break; } } // handle comment if(peek == '/'){ peek = (char) stream.read(); if(peek == '/'){ // single line comment for(;;peek = (char)stream.read()){ if(peek == '\n'){ break; } } }else if(peek == '*'){ // block comment char prevPeek = ' '; for(;;prevPeek = peek, peek = (char)stream.read()){ if(prevPeek == '*' && peek == '/'){ break; } } }else{ throw new SyntaxException(); } } // handle relation sign if("".indexOf(peek) > -1){ StringBuffer b = new StringBuffer(); b.append(peek); peek = (char)stream.read(); if(peek == '='){ b.append(peek); } return new Rel(b.toString()); } // handle number, no type sensitive if(Character.isDigit(peek) || peek == '.'){ Boolean isDotExist = false; StringBuffer b = new StringBuffer(); do{ if(peek == '.'){ isDotExist = true; } b.append(peek); peek = (char)stream.read(); }while(isDotExist == true ? Character.isDigit(peek) : Character.isDigit(peek) || peek == '.'); return new Num(new Float(b.toString())); } // handle word if(Character.isLetter(peek)){ StringBuffer b = new StringBuffer(); do{ b.append(peek); peek = (char)stream.read(); }while(Character.isLetterOrDigit(peek)); String s = b.toString(); Word w = words.get(s); if(w == null){ w = new Word(Tag.ID, s); words.put(s, w); } return w; } Token t = new Token(peek); peek = ' '; return t; } Exercises for Section 2.8 2.8.1 For-statements in C and Java have the form: for ( exprl ; expr2 ; expr3 ) stmt The first expression is executed before the loop; it is typically used for initializ­ ing the loop index. The second expression is a test made before each iteration of the loop; the loop is exited if the expression becomes O. The loop itself can be thought of as the statement {stmt expr3 ; }. The third expression is executed at the end of each iteration; it is typically used to increment the loop index. The meaning of the for-statement is similar to expr1 ; while ( expr2 ) {stmt expr3 ; } Define a class For for for-statements, similar to class If in Fig. 2.43. Answer class For extends Stmt{ Expr E1; Expr E2; Expr E3; Stmt S; public For(Expr expr1, Expr expr2, Expr expr3, Stmt stmt){ E1 = expr1; E2 = expr2; E3 = expr3; S = stmt; } public void gen(){ E1.gen(); Label start = new Lable(); Lalel end = new Lable(); emit("ifFalse " + E2.rvalue().toString() + " goto " + end); S.gen(); E3.gen(); emit("goto " + start); emit(end + ":") } } 2.8.2 The programming language C does not have a boolean type. Show how a C compiler might translate an if-statement into three-address code. Answer Replace emit("isFalse " + E.rvalue().toString() + " goto " + after); with emit("ifNotEqual " + E.rvalue().toString() + " 0 goto " + after); or emit("isNotEqualZero " + E.rvalue().toString() + " goto " + after);
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值