二分图匹配

匈牙利算法和KM算法简介


最大匹配:

* 给定一个二分图G ,在G的一个子图M中,M的边集{E}的任意两条边都不依附于同一个顶点,则称M是一个匹配

* 选择这样的边数最大的子集称为图的最大匹配问题

*如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配


二分图性质

A.最大独立集=点数-最大匹配数

B.最小路径覆盖(有向无环图)=点数-最大匹配数

C.最小点覆盖数=最大匹配数


匈牙利算法
求最大匹配的一种显而易见的算法是:先找出全部匹配,然后保留匹配数最多的。但是这个算法的复杂度为边数的指数级函数。因此,需要寻求一种更加高效的算法

增广路定义
若P是图G中一条连通两个未匹配顶点的路径,并且属M的边和不属M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径


由增广路的定义可推出三个结论

A.P的路径长度必定为奇数,第一条边和最后一条边都不属于M

B.P经过取反操作可以得到一个更大的匹配M’

C.M为G的最大匹配当且仅当不存在相对于M的增广路径


匈牙利算法:用增广路求最大匹配

算法轮廓:
A.置M为空
B.找出一条增广路径P,通过取反操作获得更大的匹配M’代替M
C.重复B操作直到找不出增广路径为止


int hungary()
{
	int num=0;
    int i,j;
	for(i=1;i<=n;i++)
	{
       for(j=1;j<=m;j++)
          use[j]=0;
       if(dfs(i))
          num++;
	}
	return num;
} 


bool dfs(int x)
{
    int i,j;    
    for(i=1;i<=m;i++)
    {
        if (use[i]==0&&map[x][i]) 
        {
            use[i]=1;
            j=link[i];
            link[i]=x;
            if (j==-1||dfs(j)) 
            {
                return true;
            }
            link[i]=j;
        }       
    }
    return false;
}



如果边上带权的话,找出权和最大的匹配叫做求最佳匹配

可行顶标是一个结点函数l,使得对于任意弧(x,y),有l(x)+l(y)>=w(x,y).相等子图是G的生成子图,包含所有点,但只包含满足l(x)+l(y)=w(x,y)的所有边(x,y).关于这两个概念有一个极为重要的定理,即如果相等子图有完美匹配,则该匹配是原图的最大权匹配。

这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。 


欲求完全二分图的最佳匹配,只要用匈牙利算法求其相等子图的完备匹配;问题是当标号之后的Gl无完备匹配时怎么办?1957年(居然比匈牙利算法早???),Kuhn和Munkras给出了一个解决该问题的有效算法,用逐次修改可行顶标l(v)的办法使对应的相等子图之最大匹配逐次增广,最后出现完备匹配。


         我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现: 
两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。 
两端都不在交错树中的边(i,j),A[i]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。 
X端不在交错树中,Y端在交错树中的边(i,j),它的A[i]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。 
X端在交错树中,Y端不在交错树中的边(i,j),它的A[i]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。 
  现在的问题就是求d值了。为了使A[i]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于min{A[i]+B[j]-w[i,j]|Xi在交错树中,Yi不在交错树中}。 
  以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶 标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数 slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A [i]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改 顶标后,要把所有的slack值都减去d。


Kuhn-Munkras算法流程:
A.初始化可行顶标的值
B.用匈牙利算法寻找完备匹配
C.若未找到完备匹配则修改可行顶标的值
D.重复B,C直到找到相等子图的完备匹配为止


int KM()
{
    int i,j,k,d;
    int cost=0;
    init();
    for(i=1;i<=n;i++)  
    {
        while(1)  
        {
            memset(x,0,sizeof(x));
            memset(y,0,sizeof(y));
            if(hungary(i)) 
                 break;  //若找到最大匹配,结束
            d=M;
            for(j=1;j<=n;j++)
                if(x[j])
                    for(k=1;k<=n;k++)
                        if(!y[k])
                            d=min(d,lx[j]+ly[k]-m[j][k]);   //找ld+;y中最小值d
            if(d==M) break;
            for(j=1;j<=n;j++) 
            { //修改lx,ly
                if(x[j]) lx[j]-=d;
                if(y[j]) ly[j]+=d;
            }
        }
    }
    for(i=1;i<=n;i++) 
    {
        cost+=m[link[i]][i];
    }
    return cost;
}

bool hungary (int a) 
{ //用匈牙利找最大匹配
    int i,d;
    x[a]=true;
    for(i=1;i<=n;i++)
    {
        if(!y[i]&&m[a][i]==lx[a]+ly[i]) 
        {
            y[i]=true;
            if(link[i]==-1||Find(link[i])) 
            {
                link[i]=a;
                return true;
            }
        }
    }
    return false;
} 



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值