基于DEAP的脑电情绪识别完整代码分析

本文详细分析了基于DEAP数据集的脑电情绪识别代码。首先介绍所需库,如pandas,然后加载DEAP EEG数据,接着划分训练集和测试集,对数据进行标准化。选择支持向量机(SVM)作为分类器进行模型训练,并在测试集上评估性能。最后,讨论如何保存模型以备后续使用。此代码实例为情绪识别提供了一个基础框架,可进一步优化提升识别效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

脑电情绪识别是一项关键的研究领域,它涉及使用脑电图(EEG)数据来识别和分类人的不同情绪状态。DEAP(Database for Emotion Analysis using Physiological Signals)是一个广泛使用的公开数据集,用于情绪识别领域的研究。在本文中,我们将深入分析基于DEAP数据集的脑电情绪识别的完整代码。

首先,我们需要导入所需的Python库和模块。以下是代码中常用的库和模块:

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值