【文献阅读】4-Data Augmentation for EEG-Based Emotion Recognition with Deep Convolutional Neural Net-2018

摘要

本文针对脑电信号的情绪识别数据集数据较少的问题,提出了一种数据增强的方法在对浅层和深层,一共三个学习模型进行使用前后的对比测试,对情绪进行三类划分。

关键词

Emotion recognition, Data augmentation, EGG

背景

  情绪识别基于两个大类进行,一个是基于它自身的特征,如:脸部表情,声音的语调,身体姿势等;而另一种则是基于生物信号,如:EGG,ECG,脉搏跳动的频率,呼吸信号等。基于生物信号的情绪识别相对于基于特征的情绪识别,更能处理更加细节和复杂的信息,得到更加有效和可靠的结果。

目前,公共的情绪识别的EGG数据集有限,并且收集成本高,但深度学习模型需要大量的测试样本,在这种供不应求的情况下,引入了数据增强的方法。

创新点

提出了基于EGG的情绪识别方法
提出了添加高斯噪声的数据增强方法,来生成更多的EGG训练样本

方法

基于EGG的情绪识别方法,一般分为两步:特征提取和情绪分类。
EGG流程图

特征提取

1.1 获取微分熵特征(DE),时间序列X服从高斯分布
DE
1.2 假设EEG信号用n通道记录,并且EEG信号段的长度为ls
1.3 首先使用带通滤波器获每个信道的5个频段,delta (1– 3 Hz), theta (4– 7 Hz), alpha (8– 13 Hz), beta (14– 30 Hz), gamma (31– 50 Hz)
1.4 使用256点的短时傅里叶变换和1s的Hamming 窗口以此来获取每个频带的能谱;
1.5 通过计算对数能谱来获取每个频带的DE特征,每个特征样本大小为:n x l x 5.

情绪分类

使用三类机器学习模型作为分类器,SVM,LeNet,ResNet

  • SVM:使用LIBSM工具包,浅层网络,线性核+网格优化,使用5个频段

  • LeNet:使用MATCONVNE工具包,使用5个频段

  • ResNet:使用MATCONVNE工具包,使用3个频段

    数据增强的方法,分为两种:一种是geometric transformation,如:shift,scale, rotation,reflection;还有一种是noise addition。但是geometric transformation 不适合具有随机性和非稳定性的EGG信号,而且获取的特征依旧是一个时间序列。所以选用noise addition,而noise:Gaussian,Poisson,Salt,Pepper等,除了Gaussian是全局的,后是三种噪声是局部噪声。所以选用高斯噪声加入到特征样本中去。
    

高斯随机变量Z的概率密度函数
高斯的均值设为0,标准差设为0.001,0.01,0.02,0.1,0.5;m参数表示增强的倍数,m=1表示未加入数据增强。
密度函数
情绪分类类型:negativeneutralpositive

实验

  1. 在两个数据集上面 SEED 和 MAHNOB-HCI 进行测试
  2. 在SEED上,SVM-PCA+SVM-LeNet-ResNet-without data augmentation 和 SVM-PCA+SVM-LeNet-ResNet-withdata augmentation进行对比实验
  3. 在MAHNOB-HCI上,进行with data augmentation,均值设为0,数据增强度为30,SVM和ResNet标准差分别设置为0.2和0.01。
  4. 评价指标为Accuracy

得到的结论:降维对SVM的精度影响为下降,同时在不用数据增强时,SVM比深度学习网络模型识别效果要好,说明SVM对样本的数量不是很敏感。
without
在LeNet加入数据增强后,平均识别精度在高斯随机变量的标准差为0.2时,数据增强度为30时最高。
LeNet
High frequency : alpha, beta, and gamma
Low frequency:elta, theta, and alpha
在这里插入图片描述
MAHNOB-HCI

结论与不足

浅层网络在数据增强前后表现不是很明显,但是数据增强对深层网络能够有效的提高识别精度。未来,还想对更多的深度模型,选用其他的数据增强方法来进行验证本文方法的普遍性和有效性。
我的思考:
对于情绪分类的类型是否太少?
对于模型的交叉验证是否太少?

参考

参考文献
[1]: 原文

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Autoencoder-based data augmentation can have a significant influence on deep learning-based wireless communication systems. By generating additional training data through data augmentation, the performance of deep learning models can be greatly improved. This is particularly important in wireless communication systems, where the availability of large amounts of labeled data is often limited. Autoencoder-based data augmentation techniques can be used to generate synthetic data that is similar to the real-world data. This can help to address the problem of overfitting, where the deep learning model becomes too specialized to the training data and performs poorly on new, unseen data. By increasing the diversity of the training data, the deep learning model is better able to generalize to new data and improve its performance. Furthermore, autoencoder-based data augmentation can also be used to improve the robustness of deep learning models to channel variations and noise. By generating synthetic data that simulates different channel conditions and noise levels, the deep learning model can be trained to be more resilient to these factors. This can result in improved performance in real-world wireless communication scenarios, where channel conditions and noise levels can vary widely. In conclusion, autoencoder-based data augmentation can have a significant influence on deep learning-based wireless communication systems by improving the performance and robustness of deep learning models.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值